RESUMO
The acute impact of cardiovascular exercise on implicit motor learning of stroke survivors is still unknown. We investigated the effects of cardiovascular exercise on implicit motor learning of mild-moderately impaired chronic stroke survivors and neurotypical adults. We addressed whether exercise priming effects are time-dependent (e.g., exercise before or after practice) in the encoding (acquisition) and recall (retention) phases. Forty-five stroke survivors and 45 age-matched neurotypical adults were randomized into three sub-groups: BEFORE (exercise, then motor practice), AFTER (motor practice, then exercise), and No-EX (motor practice alone). All sub-groups practiced a serial reaction time task (five repeated and two pseudorandom sequences per day) on three consecutive days, followed 7 days later by a retention test (one repeated sequence). Exercise was performed on a stationary bike, (one 20-min bout per day) at 50% to 70% heart rate reserve. Implicit motor learning was measured as a difference score (repeated-pseudorandom sequence response time) during practice (acquisition) and recall (delayed retention). Separate analyses were performed on the stroke and neurotypical groups using linear mixed-effects models (participant ID was a random effect). There was no exercise-induced benefit on implicit motor learning for any sub-group. However, exercise performed before practice impaired encoding in neurotypical adults and attenuated retention performance of stroke survivors. There is no benefit to implicit motor learning of moderately intense cardiovascular exercise for stroke survivors or age-matched neurotypical adults, regardless of timing. Practice under a high arousal state and exercise-induced fatigue may have attenuated offline learning in stroke survivors.
Assuntos
Destreza Motora , Acidente Vascular Cerebral , Humanos , Adulto , Destreza Motora/fisiologia , Aprendizagem/fisiologia , Exercício Físico/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Tempo de ReaçãoRESUMO
PURPOSE: We aimed to provide a critical review of measurement properties of mHealth technologies used for stroke survivors to measure the amount and intensity of functional skills, and to identify facilitators and barriers toward adoption in research and clinical practice. MATERIALS AND METHODS: Using Arksey and O'Malley's framework, two independent reviewers determined eligibility and performed data extraction. We conducted an online consultation survey exercise with 37 experts. RESULTS: Sixty-four out of 1380 studies were included. A majority reported on lower limb behavior (n = 32), primarily step count (n = 21). Seventeen studies reported on arm-hand behaviors. Twenty-two studies reported metrics of intensity, 10 reported on energy expenditure. Reliability and validity were the most frequently reported properties, both for commercial and non-commercial devices. Facilitators and barriers included: resource costs, technical aspects, perceived usability, and ecological legitimacy. Two additional categories emerged from the survey: safety and knowledge, attitude, and clinical skill. CONCLUSIONS: This provides an initial foundation for a field experiencing rapid growth, new opportunities and the promise that mHealth technologies affords for envisioning a better future for stroke survivors. We synthesized findings into a set of recommendations for clinicians and clinician-scientists about how best to choose mHealth technologies for one's individual objective.Implications for RehabilitationRehabilitation professionals are encouraged to consider the measurement properties of those technologies that are used to monitor functional locomotor and object-interaction skills in the stroke survivors they serve.Multi-modal knowledge translation strategies (research synthesis, educational courses or videos, mentorship from experts, etc.) are available to rehabilitation professionals to improve knowledge, attitude, and skills pertaining to mHealth technologies.Consider the selection of commercially available devices that are proven to be valid, reliable, accurate, and responsive to the targeted clinical population.Consider usability and privacy, confidentiality and safety when choosing a specific device or smartphone application.