Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Biol ; 1(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124711

RESUMO

Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in ß-cells can drive ß-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in ß-cells. Mice harboring Ercc1-deficient ß-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in ß-cells and a significant loss of ß-cell mass. Using electron microscopy, we identified ß-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some ß-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in ß-cells also resulted in loss of ß-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient ß-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive ß-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.

2.
Nature ; 594(7861): 100-105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981041

RESUMO

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Assuntos
Envelhecimento/imunologia , Envelhecimento/fisiologia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Imunossenescência/imunologia , Imunossenescência/fisiologia , Especificidade de Órgãos/imunologia , Especificidade de Órgãos/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Dano ao DNA/imunologia , Dano ao DNA/fisiologia , Reparo do DNA/imunologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Homeostase/imunologia , Homeostase/fisiologia , Sistema Imunitário/efeitos dos fármacos , Imunossenescência/efeitos dos fármacos , Masculino , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Rejuvenescimento , Sirolimo/farmacologia , Baço/citologia , Baço/transplante
3.
Aging Cell ; 19(3): e13094, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31981461

RESUMO

Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence-associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1-XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15-fold in peripheral lymphocytes from 4- to 5-month-old Ercc1-/∆ and 2.5-year-old wild-type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4- to 5-month-old Ercc1-/∆ mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence-associated ß-galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1-/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1-/∆ and aged WT mice support the conclusion that the DNA repair-deficient mice accurately model the age-related accumulation of senescent cells, albeit six-times faster.


Assuntos
Envelhecimento/metabolismo , Senescência Celular/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/deficiência , Endonucleases/deficiência , Pulmão/metabolismo , Pâncreas/metabolismo , Timo/metabolismo , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , RNA Mensageiro/genética , Fatores Sexuais , Linfócitos T/metabolismo
4.
EBioMedicine ; 36: 18-28, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30279143

RESUMO

BACKGROUND: Senescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of damaged DNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related diseases using genetic and pharmacologic approaches. We previously demonstrated that the combination of dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including frailty, osteoporosis and cardiovascular disease. The goal of this study was to identify flavonoids with more potent senolytic activity. METHODS: A panel of flavonoid polyphenols was screened for senolytic activity using senescent murine and human fibroblasts, driven by oxidative and genotoxic stress, respectively. The top senotherapeutic flavonoid was tested in mice modeling a progeroid syndrome carrying a p16INK4a-luciferase reporter and aged wild-type mice to determine the effects of fisetin on senescence markers, age-related histopathology, disease markers, health span and lifespan. Human adipose tissue explants were used to determine if results translated. FINDINGS: Of the 10 flavonoids tested, fisetin was the most potent senolytic. Acute or intermittent treatment of progeroid and old mice with fisetin reduced senescence markers in multiple tissues, consistent with a hit-and-run senolytic mechanism. Fisetin reduced senescence in a subset of cells in murine and human adipose tissue, demonstrating cell-type specificity. Administration of fisetin to wild-type mice late in life restored tissue homeostasis, reduced age-related pathology, and extended median and maximum lifespan. INTERPRETATION: The natural product fisetin has senotherapeutic activity in mice and in human tissues. Late life intervention was sufficient to yield a potent health benefit. These characteristics suggest the feasibility to translation to human clinical studies. FUND: NIH grants P01 AG043376 (PDR, LJN), U19 AG056278 (PDR, LJN, WLL), R24 AG047115 (WLL), R37 AG013925 (JLK), R21 AG047984 (JLK), P30 DK050456 (Adipocyte Subcore, JLK), a Glenn Foundation/American Federation for Aging Research (AFAR) BIG Award (JLK), Glenn/AFAR (LJN, CEB), the Ted Nash Long Life and Noaber Foundations (JLK), the Connor Group (JLK), Robert J. and Theresa W. Ryan (JLK), and a Minnesota Partnership Grant (AMAY-UMN#99)-P004610401-1 (JLK, EAA).


Assuntos
Produtos Biológicos/farmacologia , Flavonoides/farmacologia , Nível de Saúde , Longevidade/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Biomarcadores , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavonoides/uso terapêutico , Flavonóis , Expressão Gênica , Genes Reporter , Humanos , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Knockout
5.
Neurol Genet ; 4(3): e240, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29892709

RESUMO

OBJECTIVE: To describe the features of 2 unrelated adults with xeroderma pigmentosum complementation group F (XP-F) ascertained in a neurology care setting. METHODS: We report the clinical, imaging, molecular, and nucleotide excision repair (NER) capacity of 2 middle-aged women with progressive neurodegeneration ultimately diagnosed with XP-F. RESULTS: Both patients presented with adult-onset progressive neurologic deterioration involving chorea, ataxia, hearing loss, cognitive deficits, profound brain atrophy, and a history of skin photosensitivity, skin freckling, and/or skin neoplasms. We identified compound heterozygous pathogenic mutations in ERCC4 and confirmed deficient NER capacity in skin fibroblasts from both patients. CONCLUSIONS: These cases illustrate the role of NER dysfunction in neurodegeneration and how adult-onset neurodegeneration could be the major symptom bringing XP-F patients to clinical attention. XP-F should be considered by neurologists in the differential diagnosis of patients with adult-onset progressive neurodegeneration accompanied by global brain atrophy and a history of heightened sun sensitivity, excessive freckling, and skin malignancies.

6.
Hum Mutat ; 39(2): 255-265, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105242

RESUMO

Pathogenic variants in genes, which encode DNA repair and damage response proteins, result in a number of genomic instability syndromes with features of accelerated aging. ERCC4 (XPF) encodes a protein that forms a complex with ERCC1 and is required for the 5' incision during nucleotide excision repair. ERCC4 is also FANCQ, illustrating a critical role in interstrand crosslink repair. Pathogenic variants in this gene cause xeroderma pigmentosum, XFE progeroid syndrome, Cockayne syndrome (CS), and Fanconi anemia. We performed massive parallel sequencing for 42 unsolved cases submitted to the International Registry of Werner Syndrome. Two cases, each carrying two novel heterozygous ERCC4 variants, were identified. The first case was a compound heterozygote for: c.2395C > T (p.Arg799Trp) and c.388+1164_792+795del (p.Gly130Aspfs*18). Further molecular and cellular studies indicated that the ERCC4 variants in this patient are responsible for a phenotype consistent with a variant of CS. The second case was heterozygous for two variants in cis: c.[1488A > T; c.2579C > A] (p.[Gln496His; Ala860Asp]). While the second case also had several phenotypic features of accelerated aging, we were unable to provide biological evidence supporting the pathogenic roles of the associated ERCC4 variants. Precise genetic causes and disease mechanism of the second case remains to be determined.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Xeroderma Pigmentoso/genética , Actinas/genética , Idoso , Reparo do DNA/genética , Proteínas de Ligação a DNA/química , Anemia de Fanconi/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Lamina Tipo A/genética , Masculino , Pessoa de Meia-Idade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...