Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(6): 5231-5241, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187338

RESUMO

Despite various advancements in cancer therapies, treating cancer efficiently without side effects is still a major concern for researchers. Anticancer drugs from natural sources need to be explored as a replacement for chemo drugs to overcome their limitations. In our previous studies, isolation, characterization, and anticancer properties of a novel biosurfactant from Candida parapsilosis were reported. In this study, we report the cytotoxicity of the polymeric nanoparticles of this novel biosurfactant toward breast cancer cells. Biosurfactant-encapsulated polymeric nanoparticles of polylactic acid-poly(ethylene glycol) (PLA-PEG) copolymers were synthesized by the double emulsion solvent evaporation method. Folic acid (FA) was used as a targeting ligand to actively deliver the anticancer cargo to the cancer site. The encapsulation efficiency of nanoparticles was observed as 84.9%, and Fickian diffusion was observed as a kinetic model for the release of biosurfactant from nanoparticles. The controlled delivery of the biosurfactant was noticed when encapsulated in PLA-PEG copolymer nanoparticles. Additionally, it was observed that FA enhanced the uptake and cytotoxicity of biosurfactant-loaded nanoparticles in MDA-MB-231 cancer cells compared to biosurfactant-loaded plain nanoparticles. Induction of apoptosis was observed in cancer cells by these nanoparticles. We explore a potential anticancer agent that can be further analyzed for its efficiency and can be used as an alternative tool.

2.
J Pharm Sci ; 110(4): 1727-1738, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450216

RESUMO

The aim of this study was to evaluate the toxicological profile of biosurfactant encapsulated polymeric nanoparticles of Polylactic acid-Polyethylene glycol (PLA-PEG) in mice. Hematological, biochemical and histopathological samples of rodents were evaluated. Mice were selected randomly and divided into 3 treatment groups and one control group. Group I mice served as a control group, Group II were administrated with biosurfactant, Group III were treated with Polymeric nanoparticles of PLA-PEG. Group IV mice were injected with biosurfactant loaded polymeric nanoparticles of PLA-PEG. The formulations were administered intravenously via tail vein with 20 µg/mL dose concentration of biosurfactant. The normal control group was injected with only PBS. Blood samples were collected on 7th, 14th and 21st day and hematological and biochemical assays were performed. After the blood collection, mice were sacrificed for histopathological examination. The results showed that there were no significant difference in hematology parameter between the control and treated group. Some minute, non-significant changes were found in biochemical parameters which were not considered. Histopathological result of selected vital organs revealed that the biosurfactant and/or PLA-PEG polymeric nanoparticles can be considered as safe as no toxicological features were observed in histopathology of tissues. Hence, it can be deliberated that the biosurfactant encapsulated in PLA-PEG copolymeric nanoparticles are non toxic and can provide a safe, suitable platform for biomedical applications in future.


Assuntos
Candida parapsilosis , Nanopartículas , Animais , Camundongos , Nanopartículas/toxicidade , Tamanho da Partícula , Poliésteres , Polietilenoglicóis/toxicidade , Polímeros
3.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652668

RESUMO

Cancer is one of the deadliest diseases and poses a risk to people all over the world. Surgery, chemo, and radiation therapy have been the only options available until today to combat this major problem. Chemotherapeutic drugs have been used for treatment for more than 50 years. Unfortunately, these drugs have inherent cytotoxicities and tumor cells have started inducing resistance against these drugs. Other common techniques such as surgery and radiotherapy have their own drawbacks. Therefore, such techniques are incompetent tools to alleviate the disease efficiently without any adverse effects. This scenario has inspired researchers to develop alternative techniques with enhanced therapeutic effects and minimal side effects. Such techniques include targeted therapy, liposomal therapy, hormonal therapy, and immunotherapy, etc. However, these therapies are expensive and not effective enough. Furthermore, researchers have conjugated therapeutic agents or drugs with different molecules, delivery vectors, and/or imaging modalities to combat such problems and enhance the therapeutic effect. This conjugation technique has led to the development of bioconjugation therapy, in which at least one molecule is of biological origin. These bioconjugates are the new therapeutic strategies, having prospective synergistic antitumor effects and have potency to overcome the complications being produced by chemo drugs. Herein, we provide an overview of various bioconjugates developed so far, as well as their classification, characteristics, and targeting approach for cancer. Additionally, the most popular nanostructures based on their organic or inorganic origin (metallic, magnetic, polymeric nanoparticles, dendrimers, and silica nanoparticles) characterized as nanocarriers are also discussed. Moreover, we hope that this review will provide inspiration for researchers to develop better bioconjugates as therapeutic agents.


Assuntos
Nanoconjugados/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Nanoconjugados/efeitos adversos , Nanopartículas/efeitos adversos , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...