Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 26: 100986, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33869809

RESUMO

Seaweeds have been regarded as a reservoir of biologically active molecules that are important in the pharmaceutical industry. The aim of the present study was to explore the wound healing properties and to assess the safety of the seaweed Sargassum ilicifolium and Ulva lactuca. Enhanced cell proliferation and cell migration activities were observed in L929 cells treated with S. ilicifolium extract compared to U. lactuca extract treated cells and the control group. In-vivo experiments were conducted using five groups (10 in each) of Albino mice (BALB/c). Mice in group I and group II were treated (Orally, 100 mg/kg BW/day) with aqueous extracts of S. ilicifolium and U. lactuca, respectively for 14 days. Treatment group III received a topical application of the aqueous extract of S. ilicifolium (25% w/w) and ointment base (75% w/w) (2 g/kg BW/day, for 14 days). Group IV (Control) received an equal amount of distilled water, orally and mice in group V kept without wounds. The extract from S. ilicifolium showed stronger wound healing properties than the one from Ulva lactuca. Histopathological findings also revealed that the healing process was significantly enhanced in the mice group treated orally with S. ilicifolium aqueous extract. These findings show that S. ilicifolium species possess promising wound healing properties in-vitro and in-vivo.

2.
Heliyon ; 6(6): e03918, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529057

RESUMO

BACKGROUND: Seaweeds are an important source of bioactive compounds which are applied in various aspects of medicinal investigations. The present study was conducted to investigate cytoxicity (in-vitro and in-vivo) and wound healing activity of different seaweed species in Sri Lanka. METHODS: Twenty-three seaweed samples, belonging to Phaeophyta (Brown), Chlorophyta (Green) and Rhodophyta (Red) were used for the experiments. Samples were collected from the inter-tidal and the sub-tidal habitats around Sri Lankan coast (Southern, Northern and North-western). Aqueous seaweed extracts were tested for cytotoxic and wound healing activity; in-vitro and in-vivo. To determine toxicity of aqueous seaweed extracts, brine shrimp lethality assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay on mouse fibroblasts (L929) cell line were performed. Cell migration induction of seaweed extracts was assessed by scratch wound healing assay using L929 cell line. Based on the our previous experiments S.ilicifolium (SW23) was selected for the in vivo study to confirm our hypothesis. Albino mice (BALB/c) were divided into three groups (12 in each) and a circular area (44.07 ± 02.51 mm2) of full skin was excised to create a wound in mice group II and III. Group III received aqueous extract of Sargasum illicifolium (400 mg/kg BW/day for 12 days, orally), Group II received distilled water for 12 days whereas Group I was used as the control group and it was tested without forming wounds and without providing any treatment. Further, the expression level of Tumor Necrosis Factor (TNF-α) and Transforming Growth Factor-ß (TGF-ß) via RT-PCR were measured every three days until the end of the experiment. RESULTS: Phytochemical tests showed positive results to flavonoids in all the selected green seaweeds and alkaloids were observed in red seaweeds. In the toxicity assay, red seaweed, Acanthophora spicifera (SW17) was found to be highly effective on nauplii of brine shrimp (LC50 = 0.072 µg/µl). LC50 value of green seaweed species, Caulerpa racemosa (SW02 and SW08) and Caulerpa sertularioides (SW10) was not found within the tested concentration series. The highest cytotoxic effect on L929 cell line was exhibited by aqueous extracts of red seaweed; Jania adhaereus with 50.70 ± 7.304% cell viability compared with control group. The highest cell migration activity was observed in L929 cell line group treated with extracts of green seaweed namely; Halimeda opuntin (SW07) and extracts of brown seaweed namely; Stoechospermum polypodioides (SW11). Extracts of S. illicifolium (SW23) exhibited a significantly enhanced wound healing activity in mice group III within three days (P < 0.05) with an open wound area of 17.35 ± 1.94 mm2 compared with control group (26.29 ± 2.42 mm2). TGF-ß gene expression peaked on 6th day of post-wound and subsequently decreased on 9th day of post-wound in mice group III. TNF-α expression was suppressed in mice group III whereas it was elevated in group II. TGF-ß expression is enhanced in the treatment group compared to the control group. CONCLUSIONS: Aqueous extracts of selected seaweeds are a significant source of potential compounds with wound healing properties, which might be helpful in the healing of various wounds. This also infers that many species of brown and red seaweeds have the potential of wound healing, specifically, Sargasum illicifolium and Jania adhaereus could be a potential candidate for in-vivo studies related to wound healing and cancer therapy in the near future.

3.
J Toxicol ; 2018: 7358472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363742

RESUMO

Several countries residing envenomation due to Naja naja had revealed a disparity in the venom composition according to their geographic location and Sri Lankan cobra still lacks the evidence to support this. Therefore, the current study was focused on addressing relationship between the histopathological changes according to geographic variation of Sri Lankan N. naja venom. The histopathological changes in vital organs and muscle tissues following intramuscular administration of venom of N. naja were studied using BALB/c mice. The median lethal dose of venom of N. naja in the present study was determined to be 0.55, 0.66, 0.68, 0.62, and 0.7 mg/kg for North (NRP), Central (CRP), Western, Southern, and Sabaragamuwa Regional Population venoms, respectively. Histopathological changes were observed in different levels in vital organs and muscle tissues of mice. NRP accompanied significantly higher infiltration of inflammatory and necrotic cells into skeletal muscle and CRP venom demonstrated high level of cardiotoxic effects comparing to other regions. This study revealed a certain extent of variations in the pathological effects of N. naja venom samples according to their geographical distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...