Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973494

RESUMO

Hydrophobic peptide models derived from the α-helical transmembrane segment of the epidermal growth factor receptor were synthetically modified with a flavin amino acid as a photo-inducible charge donor and decorated with tryptophans along the helix as charge acceptors. The helical conformation of the peptides was conserved despite the modifications, notably also in lipid vesicles and multibilayers. Their ability to facilitate photo-induced transmembrane charge transport was examined by means of steady-state and time-resolved optical spectroscopy. The first tryptophan next to the flavin donor plays a major role in initiating the charge transport near the N-terminus, while the other tryptophans might promote charge transport along the transmembrane helix. These artificially modified, but still naturally derived helical peptides are important models for studying transmembrane electron transfer and the principles of photosynthesis.

2.
Bioorg Chem ; 150: 107600, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38945086

RESUMO

In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.

3.
Adv Sci (Weinh) ; : e2402011, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852174

RESUMO

The wavelength-by-wavelength resolved photoreactivity of two photo-caged carboxylic acids, i. e. 7-(diethylamino)-coumarin- and 3-perylene-modified substrates, is investigated via photochemical action plots. The observed wavelength-dependent reactivity of the chromophores is contrasted with their absorption profile. The photochemical action plots reveal a remarkable mismatch between the maximum reactivity and the absorbance. Through the action plot data, the study is able to uncover photochemical reactivity maxima at longer and shorter wavelengths, where the molar absorptivity of the chromophores is strongly reduced. Finally, the laser experiments are translated to light emitting diode (LED) irradiation and show efficient visible-light-induced release in a near fully wavelength-orthogonal, sequence-independent fashion (λLED1 = 405 nm, λLED2 = 505 nm) with both chromophores in the same reaction solution. The herein pioneered wavelength orthogonal release systems open an avenue for releasing two different molecular cargos with visible light in a fully orthogonal fashion.

4.
Org Biomol Chem ; 22(22): 4568-4573, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771639

RESUMO

Wavelength-shifting molecular beacons were prepared from L-DNA. The clickable anchor for the two dyes, Cy3 and Cy5, was 2'-O-propargyl-L-uridine and was synthesized from L-ribose. Four clickable molecular beacons were prepared and double-modified with the azide dyes by a combination of click chemistry on a solid support for Cy3 during DNA synthesis and postsynthetic click chemistry for Cy5 in solution. Cy3 and Cy5 successfully formed a FRET pair in the beacons, and the closed form (red fluorescence) and the open form (green fluorescence) can be distinguished by the two-color fluorescence readout. Two molecular beacons were identified to show the greatest fluorescence contrast in temperature-dependent fluorescence measurements. The stability of the L-configured molecular beacons was demonstrated after several heating and cooling cycles as well as in the cell lysate. In comparison, D-configured molecular beacons showed a rapid decrease of fluorescence contrast in the cell lysate, which is caused by the opening of the beacons, probably due to degradation. This was confirmed in cell experiments using confocal microscopy. The L-configured molecular beacons are potential intracellular thermometers for future applications.


Assuntos
Química Click , DNA , Uridina , DNA/química , Uridina/química , Uridina/análogos & derivados , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Transferência Ressonante de Energia de Fluorescência , Carbocianinas/química , Temperatura
5.
Chemistry ; 30(31): e202400913, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563862

RESUMO

A novel method for synthesizing cationic styryl dyes through a nucleic acid-templated reaction has been developed. This approach overcomes issues associated with traditional synthesis methods, such as harsh conditions, low throughput, and wasteful chemicals. The presence of a nucleic acid template accelerated the styryl dye formation from quaternized heteroaromatic and cationic aldehyde substrates. These styryl dyes show remarkable optical properties change when bound to nucleic acids, hence the success of the synthesis could be readily monitored in situ by UV-Vis and fluorescence spectroscopy and the optical properties data were also observable at the same time. This method provides the desired products from a broad range of coupling partners. By employing different substrates and templates, it is possible to identify new dyes that can bind to a specific type of nucleic acid such as a G-quadruplex. The templated dye synthesis is also successfully demonstrated in live HeLa cells. This approach is a powerful tool for the rapid synthesis and screening of dyes specific for diverse types of nucleic acids or cellular organelles, facilitating new biological discoveries.


Assuntos
Cátions , Corantes Fluorescentes , Ácidos Nucleicos , Humanos , Células HeLa , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ácidos Nucleicos/química , Ácidos Nucleicos/síntese química , Cátions/química , Espectrometria de Fluorescência , Quadruplex G , DNA/química , Estirenos/química , Estirenos/síntese química , Corantes/química , Corantes/síntese química
6.
Chemistry ; 30(26): e202400247, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38441913

RESUMO

N,O-acetals are found as structural motifs in natural products and are important synthetic precursors for N-acylimines as building blocks in organic synthesis for C-C-bond formation and amines. For the synthesis of N,O-acetals, an acid-, base- and metal-free catalytic method is reported applying N,N-di-(2,6-diisopropyl)-1,7-dicyano-perylen-3,4,9,10-tetracarboxylic acid imide and N,N-di-(2,6-diisopropyl)-1,6,7,12-tetrabromo-2,5,8,11-tetracyano-perylen-3,4,9,10-tetracarboxylic acid imide as extremely electron-deficient photocatalysts. The first perylene bisimide highly selectively photocatalyzes the formation of the N,O-acetals as products in high yields, and the second and more electron-deficient perylene bisimide allows these reactions without thiophenol as an H-atom transfer reagent. Calculated electron density maps support this. The reaction scope comprises different substituents at the nitrogen of the enamides and different alcohols as starting material. Dehydroalanines are converted to non-natural amino acids which shows the usefulness of this method for organic and medicinal chemistry.

7.
Angew Chem Int Ed Engl ; 63(22): e202403044, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38517205

RESUMO

Dual bioorthogonal labeling enables the investigation and understanding of interactions in the biological environment that are not accessible by a single label. However, applying two bioorthogonal reactions in the same environment remains challenging due to cross-reactivity. We developed a pair of differently modified 2'-deoxynucleosides that solved this issue for dual and orthogonal labeling of DNA. Inverse-electron demand Diels-Alder and photoclick reactions were combined to attach two different fluorogenic labels to genomic DNA in cells. Using a small synthetic library of 1- and 3-methylcyclopropenyl-modified 2'-deoxynucleosides, two 2'-deoxyuridines were identified to be the fastest-reacting ones for each of the two bioorthogonal reactions. Their orthogonal reactivity could be evidenced in vitro. Primer extension experiments were performed with both 2'-deoxyuridines investigating their replication properties as substitutes for thymidine and evaluating subsequent labeling reactions on the DNA level. Finally, dual, orthogonal and metabolic fluorescent labeling of genomic DNA was demonstrated in HeLa cells. An experimental procedure was developed combining intracellular transport and metabolic DNA incorporation of the two 2'-deoxyuridines with the subsequent dual bioorthogonal labeling using a fluorogenic cyanine-styryl tetrazine and a fluorogenic pyrene-tetrazole. These results are fundamental for advanced metabolic labeling strategies for nucleic acids in the future, especially for live cell experiments.


Assuntos
Ciclopropanos , DNA , Corantes Fluorescentes , Humanos , DNA/química , DNA/metabolismo , Células HeLa , Ciclopropanos/química , Ciclopropanos/metabolismo , Corantes Fluorescentes/química , Reação de Cicloadição , Estrutura Molecular
8.
Chembiochem ; 25(4): e202300739, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38050918

RESUMO

An orange- and a red-emitting tetrazine-modified cyanine-styryl dyes were synthesized for bioorthogonal labelling of DNA by means of the Diels-Alder reaction with inverse electron demand. Both dyes use the concept of the "two-factor" fluorogenicity for nucleic acids: (i) The dyes are nucleic-acid sensitive by their non-covalent binding to DNA, and (ii) their covalently attached tetrazine moiety quench the fluorescence. As a result, the reaction with bicyclononyne- and spirohexene-modified DNA is significantly accelerated up to k2 =280,000 M-1 s-1 , and the fluorescence turn-on is enhanced up to 305. Both dyes are cell permeable even in low concentrations and undergo fluorogenic reactions with spirohexene-modified DNA in living HeLa cells. The fluorescence is enhanced in living cells to such an extent that washing procedures before cell imaging are not required. Their large Stokes shifts (up to 0.77 eV) also makes them well suited for imaging because the wavelength ranges for excitation and emission can be best possible separated. Furthermore, the spirohexene-modified nucleosides and DNA extend and improve the toolbox of already existing "clickable" dyes for live cell imaging.


Assuntos
Corantes Fluorescentes , Compostos Heterocíclicos , Humanos , Células HeLa , DNA , Reação de Cicloadição
9.
RSC Chem Biol ; 4(12): 1037-1042, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033731

RESUMO

Two pyrene-tetrazole conjugates were synthesized as photoreactive chromophores that allow for the first time the combination of metabolic labelling of DNA in cells and subsequent bioorthogonal "photoclick" modification triggered by visible light. Two strained alkenes and three alkene-modified nucleosides were used as reactive counterparts and revealed no major differences in their "photoclick" reactivity. This is a significant advantage because it allows 5-vinyl-2'-deoxyuridine to be applied as the smallest possible alkene-modified nucleoside for metabolic labelling of DNA in cells. Both pyrene-tetrazole conjugates show fluorogenicity during the "photoclick" reactions, which is a second advantage for cellular imaging. Living HeLa cells were incubated with 5-vinyl-2'-deoxyuridine for 48 h to ensure one cell division. After fixation, the newly synthesized genomic DNA was successfully labelled by irradiation with visible light at 405 nm and 450 nm. This method is an attractive tool for the visualization of genomic DNA in cells with full spatiotemporal control by the use of visible light as a reaction trigger.

10.
Chemistry ; 29(66): e202302347, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37589486

RESUMO

Aryl chlorides as substrates for arylations present a particular challenge for photoredox catalytic activation due to their strong C(sp2 )-Cl bond and their strong reduction potential. Electron-rich N-phenylphenothiazines, as organophotoredox catalysts, are capable of cleaving aryl chlorides simply by photoinduced electron transfer without the need for an additional electrochemical activation setup or any other advanced photocatalysis technique. Due to the extremely strong reduction potential in the excited state of the N-phenylphenothiazines the substrate scope is high and includes aryl chlorides both with electron-withdrawing and electron-donating substituents. We evidence this reactivity for photocatalytic borylations and phosphonylations. Advanced time-resolved transient absorption spectroscopy in combination with electrochemistry was the key to elucidating and comparing the unusual photophysical properties not only of the N-phenylphenothiazines, but also of their cation radicals as the central intermediates in the photocatalytic cycle. The revealed photophysics allowed the excited-state and radical-cation properties to be fine-tuned by the molecular design of the N-phenylphenothiazines; this improved the photocatalytic activity.

11.
JACS Au ; 3(7): 1843-1850, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502149

RESUMO

The direct and sequence-dependent investigation of photochemical processes in DNA on the way to cyclobutane pyrimidine dimers (CPDs) as DNA damage requires the probing by photochemically different photosensitizers. The C-nucleosides of xanthone, thioxanthone, 3-methoxyxanthone, and triphenylene as photosensitizers were synthesized by Heck couplings and incorporated into ternary photoactive DNA architectures. This structural approach allows the site-selective excitation of the DNA by UV light. Together with a single defined site for T-T dimerization, not only the direct CPD formation but also the distance-dependent CPD formation in DNA as well as the possibility for energy transport processes could be investigated. Direct CPD formation was observed with xanthone, 3-methoxyxanthone, and triphenylene as sensitizers but not with thioxanthone. Only xanthone was able to induce CPDs remotely by a triplet energy transfer over up to six intervening A-T base pairs. Taken together, more precise information on the sequence dependence of the DNA triplet photochemistry was obtained.

12.
Org Biomol Chem ; 21(15): 3079-3082, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36943317

RESUMO

Aminophthalimide and N,N-dimethylaminophthalimide are used as fluorescent mimetics of purines due to their similar size and their possibility for hydrogen bonding. Their C-nucleotides were synthetically incorporated into RNA by means of phosphoramidite chemistry, behave as nonspecific fluorescent base analogs with flexible hydrogen bonding capabilities, and show solvatochromic fluorescence that is suitable for RNA imaging in live cells.


Assuntos
Nucleotídeos , RNA , Purinas , Ligação de Hidrogênio , Corantes Fluorescentes
13.
Chem Commun (Camb) ; 59(27): 4012-4015, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36920883

RESUMO

We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.


Assuntos
DNA , Luz , Humanos , Células HeLa , Raios Ultravioleta
14.
ACS Chem Biol ; 18(5): 1054-1059, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36921617

RESUMO

A selection of four different 2'-deoxyuridines with three different dienophiles of different sizes was synthesized. Their inverse electron demand Diels-Alder reactivity increases from k2 = 0.15 × 10-2 M-1 s-1 to k2 = 105 × 10-2 M-1 s-1 with increasing ring strain of the dienophiles. With a fluorogenic tetrazine-modified cyanine-styryl dye as reactive counterpart the fluorescence turn-on ratios lie in the range of 21-48 suitable for wash-free cellular imaging. The metabolic DNA labeling was visualized by a dot blot on a semiquantitative level and by confocal fluorescence microscopy on a qualitative level. A clear correlation between the steric demand of the dienophiles and the incorporation efficiency of the modified 2'-deoxyuridines into cellular DNA was observed. Even 2'-deoxyuridines with larger dienophiles, such as norbornene and cyclopropene, were incorporated to a detectable level into the nascent genomic DNA. This was achieved by an optimized way of cell culturing. This expands the toolbox of modified nucleosides for metabolic labeling of nucleic acids in general.


Assuntos
DNA , Elétrons , Reação de Cicloadição , Nucleosídeos
15.
Chemistry ; 29(13): e202300236, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36751731

RESUMO

Invited for the cover of this issue are Desirée Steuernagel and Hans-Achim Wagenknecht at the Karlsruhe Institute of Technology. The image depicts a traffic roundabout, which symbolizes the photocatalytic cycle for the conversion of aldehydes and silylenolethers as starting materials into their acetals. Read the full text of the article at 10.1002/chem.202203767.

16.
Chemistry ; 29(13): e202203767, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524858

RESUMO

Acetals and ketals are among the most important protecting groups for carbonyl compounds. A new method for acetalization and ketalization by means of photoredox catalysis has been developed. A biscyanolated perylene bisimide is used as an electron-poor photocatalyst, together with green light (525 nm LED). Silylenolethers derived from aldehydes react efficiently to give acetals in good to excellent yields. A broad substrate range was shown with respect to both the aldehydes and the alcohols. The functional group tolerance is high; in particular, acid- and hydrogen-labile protecting groups are tolerated. Aldehydes can also be directly and selectively converted into the respective acetals. Only ketones must be converted to their silylenolethers before ketalization. This photocatalytic method works without any use of acids or photoacids, and does not need any additives or H-atom transfer reagents. Hence, it broadens the substrate scope and repertoire of photoredox catalysis with respect to carbonyl chemistry.

17.
Chemistry ; 29(8): e202203156, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36367152

RESUMO

Two green fluorescent tetrazine-modified cyanine-styryl dyes were synthesized for bioorthogonal labelling of DNA by means of the Diels-Alder reaction with inverse electron demand. With DNA as target biopolymer the fluorescence of these dyes is released by two factors: (i) sterically by their interaction with DNA, and (ii) structurally via the conjugated tetrazine as quencher moiety. As a result, the reaction with bicyclononyne-modified DNA is significantly accelerated up to ≥284,000 M-1 s-1 , and the fluorescence turn-on is enhanced up to 560 by the two-factor fluorogenicity. These dyes are cell permeable even in low concentrations and undergo fluorogenic reactions with BCN-modified DNA in living HeLa cells. The two-factor fluorescence release improves the signal-to-noise ratio such that washing procedures prior to cell imaging are not needed, which is a great advantage for live cell imaging of DNA and RNA in the future.


Assuntos
DNA , Compostos Heterocíclicos , Humanos , Células HeLa , Corantes Fluorescentes , Reação de Cicloadição
18.
Bioconjug Chem ; 33(9): 1634-1642, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35995426

RESUMO

Fluorescent DNA probes were prepared in a modular approach using the "click" post-synthetic modification strategy. The new glycol-based module and DNA building block place just two carbons between the phosphodiester bridges and anchor the dye by an additional alkyne group. This creates a stereocenter in the middle of this artificial nucleoside substitute. Both enantiomers and a variety of photostable cyanine-styryl dyes as well as thiazole orange derivatives were screened as "clicked" conjugates in different surrounding DNA sequences. The combination of the (S)-configured DNA anchor and the cyanylated cyanine-styryl dye shows the highest fluorescence light-up effect of 9.2 and a brightness of approximately 11,000 M-1 cm-1. This hybridization sensitivity and fluorescence readout were further developed utilizing electron transfer and energy transfer processes. The combination of the hybridization-sensitive DNA building block with the nucleotide of 5-nitroindole as an electron acceptor and a quencher increases the light-up effect to 20 with the DNA target and to 15 with the RNA target. The fluorescence readout could significantly be enhanced to values between 50 and 360 by the use of energy transfer to a second DNA probe with commercially available dyes, like Cy3.5, Cy5, and Atto590, as energy acceptors at the 5'-end. The latter binary probes shift the fluorescent readout from the range of 500-550 nm to the range of 610-670 nm. The optical properties make these fluorescent DNA probes potentially useful for RNA imaging. Due to the strong light-up effect, they will not require washing procedures and will thus be suitable for live-cell imaging.


Assuntos
Corantes Fluorescentes , RNA , Alcinos , DNA , Sondas de DNA , Glicóis , Nucleosídeos , Nucleotídeos
19.
Chem Commun (Camb) ; 58(44): 6437-6440, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35546507

RESUMO

Cyanolated distyrylbenzene conjugated to 2'-deoxyuridine is a new building block for supramolecular DNA architectures combining aggregation-induced emission and sequence-selective binding. A high number of binding sites at the DNA template are occupied by cyanolated distyrylbenzenes. Light can be harvested in this assembly and transferred to terminal Atto dyes. Mixed DNA architectures with perylene were programmed by the sequence of the DNA template.


Assuntos
Desoxiuridina , Perileno , DNA/química , Desoxiuridina/química , Perileno/química , Estirenos
20.
Chembiochem ; 23(2): e202100265, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34569126

RESUMO

Local DNA photodamaging by light is well-studied and leads to a number of structurally identified direct damage, in particular cyclobutane pyrimidine dimers, and indirect oxidatively generated damage, such as 8-oxo-7,8-hydroxyguanine. Similar damages have now been found at remote sites, at least more than 105 Š(30 base pairs) away from the site of photoexcitation. In contrast to the established mechanisms of local DNA photodamaging, the processes of remote photodamage are only partially understood. Known pathways include those to remote oxidatively generated DNA photodamages, which were elucidated by studying electron hole transport through the DNA about 20 years ago. Recent studies with DNA photosensitizers and mechanistic proposals on photoinduced DNA-mediated energy transport are summarized in this minireview. These new mechanisms to a new type of remote DNA photodamaging provide an important extension to our general understanding to light-induced DNA damage and their mutations.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Transferência de Energia , Guanina/análogos & derivados , Guanina/metabolismo , Oxirredução , Fármacos Fotossensibilizantes/farmacologia , Dímeros de Pirimidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...