Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 60(1): 102-14, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27491786

RESUMO

There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e., damage to axons, synapses, and nerve cell bodies. While several accepted paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early and late neurodegeneration are still in their infancy and have not been convincingly validated. It was speculated that the thalamus with its multiple reciprocal connections is sensitive to inflammatory processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. To what extent the thalamus is affected in commonly applied MS animal models is, however, not known. In this article we describe direct and indirect damage to the thalamus in two distinct MS animal models. In the cuprizone model, we observed primary oligodendrocyte stress which is followed by demyelination, microglia/astrocyte activation, and acute axonal damage. These degenerative cuprizone-induced lesions were found to be more severe in the lateral compared to the medial part of the thalamus. In MOG35-55-induced EAE, in contrast, most parts of the forebrain, including the thalamus were not directly involved in the autoimmune attack. However, important thalamic afferent fiber tracts, such as the spinothalamic tract were inflamed and demyelinated on the spinal cord level. Quantitative immunohistochemistry revealed that this spinal cord inflammatory-demyelination is associated with neuronal loss within the target region of the spinothalamic tract, namely the sensory ventral posterolateral nucleus of the thalamus. This study highlights the possibility of trans-neuronal degeneration as one mechanism of secondary neuronal damage in MS. Further studies are now warranted to investigate involved cell types and cellular mechanisms.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Tálamo/patologia , Animais , Cuprizona/toxicidade , Encefalomielite Autoimune Experimental/etiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Tálamo/efeitos dos fármacos
2.
Cell Mol Life Sci ; 72(6): 1127-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25417212

RESUMO

There is a broad consensus that MS represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e. damage to axons, synapses and nerve cell bodies. While the clinician is equipped with appropriate tools to dampen peripheral cell recruitment and, thus, is able to prevent immune-cell driven relapses, effective therapeutic options to prevent the simultaneously progressing neurodegeneration are still missing. Furthermore, while several sophisticated paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early neurodegeneration are still in their infancy and have not been convincingly validated. In this review article, we aim to elaborate why the thalamus with its multiple reciprocal connections is sensitive to pathological processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. The thalamus might be, thus, an ideal region of interest to test the effectiveness of new neuroprotective MS drugs. Especially, we will address underlying pathological mechanisms operant during thalamus degeneration in MS, such as trans-neuronal or Wallerian degeneration. Furthermore, we aim at giving an overview about different paraclinical methods used to estimate the extent of thalamic pathology in MS patients, and we discuss their limitations. Finally, thalamus involvement in different MS animal models will be described, and their relevance for the design of preclinical trials elaborated.


Assuntos
Esclerose Múltipla/patologia , Tálamo/patologia , Animais , Axônios/patologia , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/terapia , Tálamo/anatomia & histologia , Degeneração Walleriana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...