Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Healthc (Amst) ; 12(2): 100738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531228

RESUMO

The COVID-19 pandemic generated tremendous interest in using real world data (RWD). Many consortia across the public and private sectors formed in 2020 with the goal of rapidly producing high-quality evidence from RWD to guide medical decision-making, public health priorities, and more. Experiences were gathered from five large consortia on rapid multi-institutional evidence generation during the COVID-19 pandemic. Insights have been compiled across five dimensions: consortium composition, governance structure and alignment of priorities, data sharing, data analysis, and evidence dissemination. The purpose of this piece is to offer guidance on building large-scale multi-institutional RWD analysis pipelines for future public health issues. The composition of each consortium was largely influenced by existing collaborations. A central set of priorities for evidence generation guided each consortium, however different approaches to governance emerged. Challenges surrounding limited access to clinical data due to various contributors were overcome in unique ways. While all consortia used different methods to construct and analyze patient cohorts ranging from centralized to federated approaches, all proved effective for generating meaningful real-world evidence. Actionable recommendations for clinical practice and public health agencies were made from translating insights from consortium analyses. Each consortium was successful in rapidly answering questions about COVID-19 diagnosis and treatment despite all taking slightly different approaches to data sharing and analysis. Leveraging RWD, leveraged in a manner that applies scientific rigor and transparency, can complement higher-level evidence and serve as an important adjunct to clinical trials to quickly guide policy and critical care, especially for a pandemic response.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Pandemias , Disseminação de Informação/métodos , SARS-CoV-2
2.
medRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370719

RESUMO

Background: Subject screening is a key aspect of all clinical trials; however, traditionally, it is a labor-intensive and error-prone task, demanding significant time and resources. With the advent of large language models (LLMs) and related technologies, a paradigm shift in natural language processing capabilities offers a promising avenue for increasing both quality and efficiency of screening efforts. This study aimed to test the Retrieval-Augmented Generation (RAG) process enabled Generative Pretrained Transformer Version 4 (GPT-4) to accurately identify and report on inclusion and exclusion criteria for a clinical trial. Methods: The Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF) trial aims to recruit patients with symptomatic heart failure. As part of the screening process, a list of potentially eligible patients is created through an electronic health record (EHR) query. Currently, structured data in the EHR can only be used to determine 5 out of 6 inclusion and 5 out of 17 exclusion criteria. Trained, but non-licensed, study staff complete manual chart review to determine patient eligibility and record their assessment of the inclusion and exclusion criteria. We obtained the structured assessments completed by the study staff and clinical notes for the past two years and developed a workflow of clinical note-based question answering system powered by RAG architecture and GPT-4 that we named RECTIFIER (RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review). We used notes from 100 patients as a development dataset, 282 patients as a validation dataset, and 1894 patients as a test set. An expert clinician completed a blinded review of patients' charts to answer the eligibility questions and determine the "gold standard" answers. We calculated the sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) for each question and screening method. We also performed bootstrapping to calculate the confidence intervals for each statistic. Results: Both RECTIFIER and study staff answers closely aligned with the expert clinician answers across criteria with accuracy ranging between 97.9% and 100% (MCC 0.837 and 1) for RECTIFIER and 91.7% and 100% (MCC 0.644 and 1) for study staff. RECTIFIER performed better than study staff to determine the inclusion criteria of "symptomatic heart failure" with an accuracy of 97.9% vs 91.7% and an MCC of 0.924 vs 0.721, respectively. Overall, the sensitivity and specificity of determining eligibility for the RECTIFIER was 92.3% (CI) and 93.9% (CI), and study staff was 90.1% (CI) and 83.6% (CI), respectively. Conclusion: GPT-4 based solutions have the potential to improve efficiency and reduce costs in clinical trial screening. When incorporating new tools such as RECTIFIER, it is important to consider the potential hazards of automating the screening process and set up appropriate mitigation strategies such as final clinician review before patient engagement.

3.
EClinicalMedicine ; 64: 102210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745021

RESUMO

Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences.

4.
PLOS Digit Health ; 2(7): e0000301, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37490472

RESUMO

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients. 30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female. We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively. We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

5.
JAMA Cardiol ; 8(1): 12-21, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350612

RESUMO

Importance: Blood pressure (BP) and cholesterol control remain challenging. Remote care can deliver more effective care outside of traditional clinician-patient settings but scaling and ensuring access to care among diverse populations remains elusive. Objective: To implement and evaluate a remote hypertension and cholesterol management program across a diverse health care network. Design, Setting, and Participants: Between January 2018 and July 2021, 20 454 patients in a large integrated health network were screened; 18 444 were approached, and 10 803 were enrolled in a comprehensive remote hypertension and cholesterol program (3658 patients with hypertension, 8103 patients with cholesterol, and 958 patients with both). A total of 1266 patients requested education only without medication titration. Enrolled patients received education, home BP device integration, and medication titration. Nonlicensed navigators and pharmacists, supported by cardiovascular clinicians, coordinated care using standardized algorithms, task management and automation software, and omnichannel communication. BP and laboratory test results were actively monitored. Main Outcomes and Measures: Changes in BP and low-density lipoprotein cholesterol (LDL-C). Results: The mean (SD) age among 10 803 patients was 65 (11.4) years; 6009 participants (56%) were female; 1321 (12%) identified as Black, 1190 (11%) as Hispanic, 7758 (72%) as White, and 1727 (16%) as another or multiple races (including American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, unknown, other, and declined to respond; consolidated owing to small numbers); and 142 (11%) reported a preferred language other than English. A total of 424 482 BP readings and 139 263 laboratory reports were collected. In the hypertension program, the mean (SD) office BP prior to enrollment was 150/83 (18/10) mm Hg, and the mean (SD) home BP was 145/83 (20/12) mm Hg. For those engaged in remote medication management, the mean (SD) clinic BP 6 and 12 months after enrollment decreased by 8.7/3.8 (21.4/12.4) and 9.7/5.2 (22.2/12.6) mm Hg, respectively. In the education-only cohort, BP changed by a mean (SD) -1.5/-0.7 (23.0/11.1) and by +0.2/-1.9 (30.3/11.2) mm Hg, respectively (P < .001 for between cohort difference). In the lipids program, patients in remote medication management experienced a reduction in LDL-C by a mean (SD) 35.4 (43.1) and 37.5 (43.9) mg/dL at 6 and 12 months, respectively, while the education-only cohort experienced a mean (SD) reduction in LDL-C of 9.3 (34.3) and 10.2 (35.5) mg/dL at 6 and 12 months, respectively (P < .001). Similar rates of enrollment and reductions in BP and lipids were observed across different racial, ethnic, and primary language groups. Conclusions and Relevance: The results of this study indicate that a standardized remote BP and cholesterol management program may help optimize guideline-directed therapy at scale, reduce cardiovascular risk, and minimize the need for in-person visits among diverse populations.


Assuntos
Hipercolesterolemia , Hipertensão , Humanos , Feminino , Idoso , Masculino , LDL-Colesterol/sangue , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Pressão Sanguínea , Atenção à Saúde
6.
Bioinformatics ; 38(20): 4833-4836, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36053173

RESUMO

MOTIVATION: The i2b2 platform is used at major academic health institutions and research consortia for querying for electronic health data. However, a major obstacle for wider utilization of the platform is the complexity of data loading that entails a steep curve of learning the platform's complex data schemas. To address this problem, we have developed the i2b2-etl package that simplifies the data loading process, which will facilitate wider deployment and utilization of the platform. RESULTS: We have implemented i2b2-etl as a Python application that imports ontology and patient data using simplified input file schemas and provides inbuilt record number de-identification and data validation. We describe a real-world deployment of i2b2-etl for a population-management initiative at MassGeneral Brigham. AVAILABILITY AND IMPLEMENTATION: i2b2-etl is a free, open-source application implemented in Python available under the Mozilla 2 license. The application can be downloaded as compiled docker images. A live demo is available at https://i2b2clinical.org/demo-i2b2etl/ (username: demo, password: Etl@2021). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Registros Eletrônicos de Saúde , Armazenamento e Recuperação da Informação , Biologia , Bases de Dados Factuais , Humanos , Informática
7.
Artigo em Inglês | MEDLINE | ID: mdl-35874460

RESUMO

Analysis of health data typically requires development of queries using structured query language (SQL) by a data-analyst. As the SQL queries are manually created, they are prone to errors. In addition, accurate implementation of the queries depends on effective communication with clinical experts, that further makes the analysis error prone. As a potential resolution, we explore an alternative approach wherein a graphical interface that automatically generates the SQL queries is used to perform the analysis. The latter allows clinical experts to directly perform complex queries on the data, despite their unfamiliarity with SQL syntax. The interface provides an intuitive understanding of the query logic which makes the analysis transparent and comprehensible to the clinical study-staff, thereby enhancing the transparency and validity of the analysis. This study demonstrates the feasibility of using a user-friendly interface that automatically generate SQL for analysis of health data. It outlines challenges that will be useful for designing user-friendly tools to improve transparency and reproducibility of data analysis.

8.
J Am Heart Assoc ; 11(15): e026014, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904194

RESUMO

Background Models predicting atrial fibrillation (AF) risk, such as Cohorts for Heart and Aging Research in Genomic Epidemiology AF (CHARGE-AF), have not performed as well in electronic health records. Natural language processing (NLP) may improve models by using narrative electronic health record text. Methods and Results From a primary care network, we included patients aged ≥65 years with visits between 2003 and 2013 in development (n=32 960) and internal validation cohorts (n=13 992). An external validation cohort from a separate network from 2015 to 2020 included 39 051 patients. Model features were defined using electronic health record codified data and narrative data with NLP. We developed 2 models to predict 5-year AF incidence using (1) codified+NLP data and (2) codified data only and evaluated model performance. The analysis included 2839 incident AF cases in the development cohort and 1057 and 2226 cases in internal and external validation cohorts, respectively. The C-statistic was greater (P<0.001) in codified+NLP model (0.744 [95% CI, 0.735-0.753]) compared with codified-only (0.730 [95% CI, 0.720-0.739]) in the development cohort. In internal validation, the C-statistic of codified+NLP was modestly higher (0.735 [95% CI, 0.720-0.749]) compared with codified-only (0.729 [95% CI, 0.715-0.744]; P=0.06) and CHARGE-AF (0.717 [95% CI, 0.703-0.731]; P=0.002). Codified+NLP and codified-only were well calibrated, whereas CHARGE-AF underestimated AF risk. In external validation, the C-statistic of codified+NLP (0.750 [95% CI, 0.740-0.760]) remained higher (P<0.001) than codified-only (0.738 [95% CI, 0.727-0.748]) and CHARGE-AF (0.735 [95% CI, 0.725-0.746]). Conclusions Estimation of 5-year risk of AF can be modestly improved using NLP to incorporate narrative electronic health record data.


Assuntos
Fibrilação Atrial , Processamento de Linguagem Natural , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Estudos de Coortes , Registros Eletrônicos de Saúde , Humanos , Incidência , Medição de Risco/métodos
9.
BMJ Open ; 12(6): e057725, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738646

RESUMO

OBJECTIVE: To assess changes in international mortality rates and laboratory recovery rates during hospitalisation for patients hospitalised with SARS-CoV-2 between the first wave (1 March to 30 June 2020) and the second wave (1 July 2020 to 31 January 2021) of the COVID-19 pandemic. DESIGN, SETTING AND PARTICIPANTS: This is a retrospective cohort study of 83 178 hospitalised patients admitted between 7 days before or 14 days after PCR-confirmed SARS-CoV-2 infection within the Consortium for Clinical Characterization of COVID-19 by Electronic Health Record, an international multihealthcare system collaborative of 288 hospitals in the USA and Europe. The laboratory recovery rates and mortality rates over time were compared between the two waves of the pandemic. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was all-cause mortality rate within 28 days after hospitalisation stratified by predicted low, medium and high mortality risk at baseline. The secondary outcome was the average rate of change in laboratory values during the first week of hospitalisation. RESULTS: Baseline Charlson Comorbidity Index and laboratory values at admission were not significantly different between the first and second waves. The improvement in laboratory values over time was faster in the second wave compared with the first. The average C reactive protein rate of change was -4.72 mg/dL vs -4.14 mg/dL per day (p=0.05). The mortality rates within each risk category significantly decreased over time, with the most substantial decrease in the high-risk group (42.3% in March-April 2020 vs 30.8% in November 2020 to January 2021, p<0.001) and a moderate decrease in the intermediate-risk group (21.5% in March-April 2020 vs 14.3% in November 2020 to January 2021, p<0.001). CONCLUSIONS: Admission profiles of patients hospitalised with SARS-CoV-2 infection did not differ greatly between the first and second waves of the pandemic, but there were notable differences in laboratory improvement rates during hospitalisation. Mortality risks among patients with similar risk profiles decreased over the course of the pandemic. The improvement in laboratory values and mortality risk was consistent across multiple countries.


Assuntos
COVID-19 , Pandemias , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2
10.
J Am Med Inform Assoc ; 29(8): 1334-1341, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35511151

RESUMO

OBJECTIVE: The increasing translation of artificial intelligence (AI)/machine learning (ML) models into clinical practice brings an increased risk of direct harm from modeling bias; however, bias remains incompletely measured in many medical AI applications. This article aims to provide a framework for objective evaluation of medical AI from multiple aspects, focusing on binary classification models. MATERIALS AND METHODS: Using data from over 56 000 Mass General Brigham (MGB) patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in 4 AI models developed during the early months of the pandemic in Boston, Massachusetts that predict risks of hospital admission, ICU admission, mechanical ventilation, and death after a SARS-CoV-2 infection purely based on their pre-infection longitudinal medical records. Models were evaluated both retrospectively and prospectively using model-level metrics of discrimination, accuracy, and reliability, and a novel individual-level metric for error. RESULTS: We found inconsistent instances of model-level bias in the prediction models. From an individual-level aspect, however, we found most all models performing with slightly higher error rates for older patients. DISCUSSION: While a model can be biased against certain protected groups (ie, perform worse) in certain tasks, it can be at the same time biased towards another protected group (ie, perform better). As such, current bias evaluation studies may lack a full depiction of the variable effects of a model on its subpopulations. CONCLUSION: Only a holistic evaluation, a diligent search for unrecognized bias, can provide enough information for an unbiased judgment of AI bias that can invigorate follow-up investigations on identifying the underlying roots of bias and ultimately make a change.


Assuntos
COVID-19 , Inteligência Artificial , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA