Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(23): 231901, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905696

RESUMO

This Letter presents a determination of the quark Collins-Soper kernel, which relates transverse-momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum chromodynamics (QCD). This is the first such determination with systematic control of quark mass, operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match lattice-calculable distributions to the corresponding TMDs. The continuum-extrapolated lattice QCD results are consistent with several recent phenomenological parametrizations of the Collins-Soper kernel and are precise enough to disfavor other parametrizations.

2.
Phys Rev E ; 109(1-2): 015307, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366518

RESUMO

The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z_{2} gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.

3.
Phys Rev Lett ; 126(20): 202001, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110196

RESUMO

The fraction of the longitudinal momentum of ^{3}He that is carried by the isovector combination of u and d quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to m_{π}∼800 MeV. With a naive extrapolation to the physical quark masses, this constraint is consistent with, and more precise than, determinations from global nuclear parton distribution function fits through the nnnpdf framework. It is thus concretely demonstrated that lattice QCD calculations of light nuclei have imminent potential to enable more precise determinations of the u and d parton distributions in light nuclei and to reveal the QCD origins of the EMC effect.

4.
Phys Rev Lett ; 122(16): 162001, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075034

RESUMO

Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.

5.
Phys Rev Lett ; 120(15): 152002, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756859

RESUMO

Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

6.
Phys Rev Lett ; 119(22): 222001, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286780

RESUMO

Common lore suggests that N-color QCD with massive quarks has no useful order parameters that can be nontrivial at zero baryon density. However, such order parameters do exist when there are n_{f} quark flavors with a common mass and d≡gcd(n_{f},N)>1. These theories have a Z_{d} color-flavor center symmetry arising from intertwined color center transformations and cyclic flavor permutations. The symmetry realization depends on the temperature, baryon chemical potential, and value of n_{f}/N, with implications for conformal window studies and dense quark matter.

7.
Phys Rev Lett ; 119(6): 062002, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949612

RESUMO

The nuclear matrix element determining the pp→de^{+}ν fusion cross section and the Gamow-Teller matrix element contributing to tritium ß decay are calculated with lattice quantum chromodynamics for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3) flavor-symmetric value of the quark masses, corresponding to a pion mass of m_{π}∼806 MeV. The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is within 2σ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the calculated pp→de^{+}ν transition matrix element leads to a fusion cross section at the physical quark masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial counterterm of pionless effective field theory is determined to be L_{1,A}=3.9(0.2)(1.0)(0.4)(0.9) fm^{3} at a renormalization scale set by the physical pion mass, also agreeing within the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and opens the way for subsequent investigations of many important quantities in nuclear physics.

8.
Phys Rev Lett ; 119(6): 062003, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949619

RESUMO

The potential importance of short-distance nuclear effects in double-ß decay is assessed using a lattice QCD calculation of the nn→pp transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-ß decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-ß decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...