Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38870929

RESUMO

In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.

2.
J Neurosci ; 43(45): 7554-7564, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940582

RESUMO

The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Cognição/fisiologia , Cerebelo/fisiologia , Transtornos do Neurodesenvolvimento/patologia
3.
Nat Neurosci ; 26(9): 1630-1641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604889

RESUMO

The vast expansion from mossy fibers to cerebellar granule cells (GrC) produces a neural representation that supports functions including associative and internal model learning. This motif is shared by other cerebellum-like structures and has inspired numerous theoretical models. Less attention has been paid to structures immediately presynaptic to GrC layers, whose architecture can be described as a 'bottleneck' and whose function is not understood. We therefore develop a theory of cerebellum-like structures in conjunction with their afferent pathways that predicts the role of the pontine relay to cerebellum and the glomerular organization of the insect antennal lobe. We highlight a new computational distinction between clustered and distributed neuronal representations that is reflected in the anatomy of these two brain structures. Our theory also reconciles recent observations of correlated GrC activity with theories of nonlinear mixing. More generally, it shows that structured compression followed by random expansion is an efficient architecture for flexible computation.


Assuntos
Encéfalo , Cerebelo , Ponte , Aprendizagem , Neurônios
4.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551316

RESUMO

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Assuntos
Condutos Olfatórios/citologia , Condutos Olfatórios/diagnóstico por imagem , Imagem com Lapso de Tempo , Animais , Axônios/fisiologia , Células Cultivadas , Dendritos/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Microtúbulos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Fatores de Tempo
5.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214470

RESUMO

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Assuntos
Movimento/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Cerebelo/fisiologia , Sincronização Cortical , Membro Anterior/fisiologia , Interneurônios/fisiologia , Aprendizagem , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Atividade Motora/fisiologia , Núcleo Olivar/fisiologia , Optogenética , Células de Purkinje/fisiologia , Comportamento Estereotipado , Análise e Desempenho de Tarefas
6.
Science ; 372(6546): 1068-1073, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083484

RESUMO

Mammalian medial and lateral hippocampal networks preferentially process spatial- and object-related information, respectively. However, the mechanisms underlying the assembly of such parallel networks during development remain largely unknown. Our study shows that, in mice, complementary expression of cell surface molecules teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in the medial and lateral hippocampal networks, respectively, guides the precise assembly of CA1-to-subiculum connections in both networks. In the medial network, Ten3-expressing (Ten3+) CA1 axons are repelled by target-derived Lphn2, revealing that Lphn2- and Ten3-mediated heterophilic repulsion and Ten3-mediated homophilic attraction cooperate to control precise target selection of CA1 axons. In the lateral network, Lphn2-expressing (Lphn2+) CA1 axons are confined to Lphn2+ targets via repulsion from Ten3+ targets. Our findings demonstrate that assembly of parallel hippocampal networks follows a "Ten3→Ten3, Lphn2→Lphn2" rule instructed by reciprocal repulsions.


Assuntos
Orientação de Axônios , Axônios/fisiologia , Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Região CA1 Hipocampal/citologia , Córtex Entorrinal/fisiologia , Feminino , Hipocampo/citologia , Ligantes , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Vias Neurais , Receptores de Peptídeos/genética , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088841

RESUMO

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Fibras Nervosas/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebelar/virologia , Camundongos , Camundongos Transgênicos , Fibras Nervosas/virologia , Vírus da Raiva/metabolismo
8.
Neuron ; 109(4): 629-644.e8, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33352118

RESUMO

The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, but this hypothesis has not been causally tested in vivo in the mammalian brain. The presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer. Developmental, overexpression, structure-function, and genetic epistasis analyses indicate that these dendrite morphogenesis defects result from a deficit in Cbln1/GluD2-dependent competitive interactions. A generative model of dendrite growth based on competitive synaptogenesis largely recapitulates GluD2 sparse and global knockout phenotypes. Our results support the synaptotrophic hypothesis at initial stages of dendrite development, suggest a second mode in which cumulative synapse formation inhibits further dendrite growth, and highlight the importance of competition in dendrite morphogenesis.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Dendritos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Precursores de Proteínas/deficiência , Células de Purkinje/metabolismo , Receptores de Glutamato/deficiência , Animais , Dendritos/genética , Feminino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Gravidez , Ligação Proteica/fisiologia , Precursores de Proteínas/genética , Receptores de Glutamato/genética
9.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33338423

RESUMO

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Assuntos
Cognição/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Animais , Cálcio/metabolismo , Comportamento de Escolha , Sinais (Psicologia) , Imageamento Tridimensional , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Odorantes , Optogenética , Substância Cinzenta Periaquedutal/fisiologia , Recompensa , Análise de Célula Única , Transcriptoma/genética
10.
Nat Protoc ; 15(3): 1237-1254, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32034393

RESUMO

Skilled forelimb behaviors are among the most important for studying motor learning in multiple species including humans. This protocol describes learned forelimb tasks for mice using a two-axis robotic manipulandum. Our device provides a highly compact adaptation of actuated planar two-axis arms that is simple and inexpensive to construct. This paradigm has been dominant for decades in primate motor neuroscience. Our device can generate arbitrary virtual movement tracks, arbitrary time-varying forces or arbitrary position- or velocity-dependent force patterns. We describe several example tasks permitted by our device, including linear movements, movement sequences and aiming movements. We provide the mechanical drawings and source code needed to assemble and control the device, and detail the procedure to train mice to use the device. Our software can be simply extended to allow users to program various customized movement assays. The device can be assembled in a few days, and the time to train mice on the tasks that we describe ranges from a few days to several weeks. Furthermore, the device is compatible with various neurophysiological techniques that require head fixation.


Assuntos
Membro Anterior , Movimento , Desempenho Psicomotor/fisiologia , Robótica/instrumentação , Robótica/métodos , Animais , Fenômenos Biomecânicos , Cabeça , Camundongos
11.
Trends Neurosci ; 43(1): 42-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31787351

RESUMO

Although classically thought of as a motor circuit, the cerebellum is now understood to contribute to a wide variety of cognitive functions through its dense interconnections with the neocortex, the center of brain cognition. Recent investigations have shed light on the nature of cerebellar cognitive processing and information exchange with the neocortex. We review findings that demonstrate widespread reward-related cognitive input to the cerebellum, as well as new studies that have characterized the codependence of processing in the neocortex and cerebellum. Together, these data support a view of the neocortex-cerebellum circuit as a joint dynamic system both in classical sensorimotor contexts and reward-related, cognitive processing. These studies have also expanded classical theory on the computations performed by the cerebellar circuit.


Assuntos
Cerebelo , Cognição , Neocórtex , Cerebelo/fisiologia , Cognição/fisiologia , Humanos , Neocórtex/fisiologia
12.
Nat Methods ; 16(11): 1119-1122, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659327

RESUMO

Two-photon microscopy is a mainstay technique for imaging in scattering media and normally provides frame-acquisition rates of ~10-30 Hz. To track high-speed phenomena, we created a two-photon microscope with 400 illumination beams that collectively sample 95,000-211,000 µm2 areas at rates up to 1 kHz. Using this microscope, we visualized microcirculatory flow, fast venous constrictions and neuronal Ca2+ spiking with millisecond-scale timing resolution in the brains of awake mice.


Assuntos
Encéfalo/irrigação sanguínea , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Vigília
13.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929904

RESUMO

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Assuntos
Cerebelo/metabolismo , Neocórtex/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Membro Anterior/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Neocórtex/patologia , Opsinas/genética , Opsinas/metabolismo , Células Piramidais/metabolismo
14.
Neuropsychopharmacology ; 43(1): 222-223, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29192666
15.
Nature ; 544(7648): 96-100, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321129

RESUMO

The human brain contains approximately 60 billion cerebellar granule cells, which outnumber all other brain neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes. Although evidence suggests a role for the cerebellum in cognition, granule cells are known to encode only sensory and motor context. Here, using two-photon calcium imaging in behaving mice, we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed sugar-water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward-omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from the current understanding of these neurons and markedly enriches the contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum.


Assuntos
Antecipação Psicológica/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Recompensa , Animais , Comportamento Animal/fisiologia , Cálcio/análise , Cálcio/metabolismo , Cognição/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Feminino , Membro Anterior/fisiologia , Masculino , Camundongos , Imagem Molecular , Movimento , Células de Purkinje/fisiologia
16.
Nat Commun ; 5: 3674, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755708

RESUMO

Genetically encoded fluorescence voltage sensors offer the possibility of directly visualizing neural spiking dynamics in cells targeted by their genetic class or connectivity. Sensors of this class have generally suffered performance-limiting tradeoffs between modest brightness, sluggish kinetics and limited signalling dynamic range in response to action potentials. Here we describe sensors that use fluorescence resonance energy transfer (FRET) to combine the rapid kinetics and substantial voltage-dependence of rhodopsin family voltage-sensing domains with the brightness of genetically engineered protein fluorophores. These FRET-opsin sensors significantly improve upon the spike detection fidelity offered by the genetically encoded voltage sensor, Arclight, while offering faster kinetics and higher brightness. Using FRET-opsin sensors we imaged neural spiking and sub-threshold membrane voltage dynamics in cultured neurons and in pyramidal cells within neocortical tissue slices. In live mice, rates and optical waveforms of cerebellar Purkinje neurons' dendritic voltage transients matched expectations for these cells' dendritic spikes.


Assuntos
Encéfalo/metabolismo , Diagnóstico por Imagem/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Opsinas/metabolismo , Animais , Linhagem Celular , Eletrofisiologia/métodos , Humanos , Masculino , Camundongos , Neurônios/metabolismo
17.
J Neurosci ; 28(42): 10663-73, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923042

RESUMO

A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.


Assuntos
Retroalimentação/fisiologia , Modelos Biológicos , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Movimento/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia
18.
J Invest Dermatol ; 122(4): 1010-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15102092

RESUMO

alpha-MSH signals by binding to the melanocortin-1 receptor (MC-1R) and elevating cyclic AMP in several different cells. The anti-inflammatory properties of this peptide are also believed to be cyclic AMP dependent. The carboxyl terminal tripeptides of alpha-MSH (KPV / KP-D-V) are the smallest minimal sequences reported to prevent inflammation but it is not known if they operate via MC-1R or cyclic AMP. The aim of this study was to examine the intracellular signalling of key MSH and ACTH peptides in human keratinotocytes. No elevation in cyclic AMP was detected in either HaCaT or normal human keratinocytes in response to alpha-MSH, KPV or ACTH peptides. Rapid and acute intracellular calcium, however, were observed in HaCaT keratinocytes in response to alpha-MSH (10(-15)-10(-7) M), KPV (10(-15)-10(-7) M), KP-D-V (10(-15)-10(-7) M) and ACTH (10(-15)-10(-7) M), but only in the presence of PIA, an adenosine agonist that inhibits the cyclic AMP pathway. Normal keratinocytes responded to all the above peptides but in addition responded to ACTH 1-17 (10(-13)-10(-7) M) in contrast to the HaCaT keratinocytes. Stable transfection of Chinese hamster ovary cells with the MC-1 receptor showed that alpha-MSH and the KPV peptides elevated intracellular calcium.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Queratinócitos/metabolismo , Hormônios Estimuladores de Melanócitos/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , alfa-MSH/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Animais , Células CHO , Cálcio/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Hormônios Estimuladores de Melanócitos/farmacologia , Monofenol Mono-Oxigenase/metabolismo , NF-kappa B/fisiologia , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...