Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7132, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346037

RESUMO

The health of western honey bee (Apis mellifera) colonies is challenged by the parasitic mite Varroa destructor and the numerous harmful pathogens it vectors. Selective breeding for the naturally occurring social immune trait "hygienic behavior" has emerged as one sustainable approach to reducing the mites' impact on honey bees. To expand our understanding of hygienic triggers and improve hygienic selection tools, we tested the hypothesis that the cuticular compounds (Z)-10-tritriacontene and (Z)-6-pentadecene, previously associated with unhealthy honey bee brood and/or brood targeted for hygiene, are triggers of honey bee hygienic behavior independent of brood health. In support of our hypothesis, application of synthetic (Z)-10-tritriacontene and (Z)-6-pentadecene onto brood and brood cell caps significantly increased hygienic behavior compared to application of similarly structured hydrocarbon controls (Z)-16-dotriacontene and (Z)-7-pentadecene. Furthermore, we demonstrate a significant positive correlation between colony-level hygienic responses to (Z)-10-tritriacontene and the traditional freeze-killed brood assay for selection of hygienic honey bee stocks. These results confirm biological activity of (Z)-6-pentadecene and reveal (Z)-10-tritriacontene as a novel hygiene trigger. They also support development of improved tools for honey bee colony monitoring and hygienic selection, and thus may accelerate development of honey bee stocks with greater resistance to Varroa and associated pathogens.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Feromônios/fisiologia , Animais
2.
Ecol Evol ; 9(11): 6722-6737, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236255

RESUMO

The main selective force driving floral evolution and diversity is plant-pollinator interactions. Pollinators use floral signals and indirect cues to assess flower reward, and the ensuing flower choice has major implications for plant fitness. While many pollinator behaviors have been described, the impact of parasites on pollinator foraging decisions and plant-pollinator interactions have been largely overlooked. Growing evidence of the transmission of parasites through the shared-use of flowers by pollinators demonstrate the importance of behavioral immunity (altered behaviors that enhance parasite resistance) to pollinator health. During foraging bouts, pollinators can protect themselves against parasites through self-medication, disease avoidance, and grooming. Recent studies have documented immune behaviors in foraging pollinators, as well as the impacts of such behaviors on flower visitation. Because pollinator parasites can affect flower choice and pollen dispersal, they may ultimately impact flower fitness. Here, we discuss how pollinator immune behaviors and floral traits may affect the presence and transmission of pollinator parasites, as well as how pollinator parasites, through these immune behaviors, can impact plant-pollinator interactions. We further discuss how pollinator immune behaviors can impact plant fitness, and how floral traits may adapt to optimize plant fitness in response to pollinator parasites. We propose future research directions to assess the role of pollinator parasites in plant-pollinator interactions and evolution, and we propose better integration of the role of pollinator parasites into research related to pollinator optimal foraging theory, floral diversity and agricultural practices.

3.
J Econ Entomol ; 111(6): 2520-2530, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30212863

RESUMO

Despite receiving much attention, the ectoparasitic mite Varroa destructor (Anderson and Trueman) and the pathogens it vectors remain critical threats to the health of the honey bee Apis mellifera (Linnaeus) (Hymenoptera: Apidae). One promising intervention approach is the breeding of hygienic honey bees, which have an improved ability to detect and remove unhealthy brood from the colony, and are thus more resistant to Varroa. While much hygienic behavior-related research has focused on enhanced adult honey bee olfaction, less attention has been paid to the olfactory signals that originate inside the brood cell, triggering hygienic removal. Here, we hypothesized that selection for hygienic behavior in honey bees has influenced brood signaling, predicting that: 1) in a common social environment, removal rates differ among brood with different selective breeding histories, and 2) the removal rates of brood positively correlate to the hygiene level of the brood's colony of origin. To test these predictions, we cross-fostered brood subjected to control, wound, or Varroa treatment in unselected (UNS), Minnesota Hygienic (HYG), and Varroa-Sensitive Hygienic (VSH) colonies, and monitored individual brood cells for hygienic removal. Results confirmed both predictions, as brood from hygienic colonies was more likely to be removed than brood from UNS colonies, regardless of where the brood was fostered. These findings suggest that hygiene-related brood signals complement previously identified characteristics of hygienic adults, constituting an important mechanism of social immunity in honey bees. Thus, selective breeding for honey bee hygienic behavior may be improved through the utilization of field assays containing compounds related to larval signaling.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Seleção Genética , Olfato , Animais , Abelhas/parasitologia , Larva/fisiologia , Meio Social , Varroidae
4.
Parasit Vectors ; 7: 294, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24970701

RESUMO

BACKGROUND: Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. METHODS: Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. RESULTS: Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. CONCLUSIONS: Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation.


Assuntos
Anopheles/anatomia & histologia , Anopheles/metabolismo , Animais , Biomarcadores , Feminino , Larva/fisiologia , Chuva , Estações do Ano
5.
BMC Ecol ; 13: 26, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23870063

RESUMO

The recent declines in managed honey bee populations are of scientific, ecological and economic concern, and are partially attributed to honey bee parasites and related disease. McDonnell et al. investigate behavioral, chemical and neurogenomic effects of parasitization by the ectoparasite Varroa destructor and the endoparasite Nosema ceranae. The study reveals important links between underlying mechanisms of immunity and parasitization in social insects by demonstrating that chemical signals and neurogenomic states are significantly different between parasitized and non-parasitized honey bees, and that neurogenomic states are partially conserved between bees infected with distinct parasites. However the study does not reveal whether differences measured are primarily the result of adaptive host responses or of manipulation of the honey bee host by the parasites and/or confounding viral loads of parasitized individuals. Questions answered and raised by McDonnell et al. will lead to an improved understanding of honey bee health and, more generally, host-parasite interactions.


Assuntos
Abelhas/parasitologia , Encéfalo/metabolismo , Ácaros , Nosema , Comportamento Social , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...