Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802188

RESUMO

Sake (rice wine) produced by multiple parallel fermentation (MPF) involving Aspergillus oryzae (strain RW) and Saccharomyces cerevisiae under solid-state cultivation conditions contained 3.5 mM agmatine, while that produced from enzymatically saccharified rice syrup by S. cerevisiae contained <0.01 mM agmatine. Agmatine was also produced in ethanol-free rice syrup prepared with A. oryzae under solid-state cultivation (3.1 mM) but not under submerged cultivation, demonstrating that A. oryzae in solid-state culture produces agmatine. The effect of cultivation conditions on agmatine production was examined. Agmatine production was boosted at 30°C and reached the highest level (6.3 mM) at pH 5.3. The addition of l-lactic, succinic, and citric acids reduced the initial culture pHs to 3.0, 3.5, and 3.2, respectively, resulting in a further increase in agmatine accumulation (8.2, 8.7, and 8.3 mM, respectively). Homogenate from a solid-state culture exhibited a maximum l-arginine decarboxylase (ADC) activity (74 pmol · min-1 · µg-1) at pH 3.0 at 30°C; homogenate from a submerged culture exhibited an extremely low activity (<0.3 pmol · min-1 · µg-1) under all conditions tested. These observations indicated that efficient agmatine production in ethanol-free rice syrup is achieved by an unidentified low-pH-dependent ADC induced during solid-state cultivation of A. oryzae, even though A. oryzae lacks ADC orthologs and instead possesses four ornithine decarboxylases (ODC1 to ODC4). Recombinant ODC1 and ODC2 exhibited no ADC activity at acidic pH (pH < 4.0), suggesting that other decarboxylases or an unidentified ADC is involved in agmatine production.IMPORTANCE It has been speculated that, in general, fungi do not synthesize agmatine from l-arginine because they do not possess genes encoding arginine decarboxylase. Numerous preclinical studies have shown that agmatine exerts pleiotropic effects on various molecular targets, leading to an improved quality of life. In the present study, we first demonstrated that l-arginine was a feasible substrate for agmatine production by the fungus Aspergillus oryzae RW. We observed that the productivity of agmatine by A. oryzae RW was elevated at low pH only during solid-state cultivation. A. oryzae is utilized in the production of various Asian fermented foods. The saccharification conditions optimized in the current study could be employed not only in the production of an agmatine-containing ethanol-free rice syrup but also in the production of many types of fermented foods, such as soy sauce (shoyu), rice vinegar, etc., as well as for use as novel therapeutic agents and nutraceuticals.


Assuntos
Agmatina/metabolismo , Aspergillus oryzae/metabolismo , Meios de Cultura/química , Agmatina/análise , Aspergillus oryzae/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Meios de Cultura/metabolismo , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Oryza/química , Oryza/microbiologia
2.
Int J Food Microbiol ; 166(2): 238-43, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23973834

RESUMO

Miso (fermented soybean paste) is a traditional Japanese fermented food, and is now used worldwide. The solid-state culture of filamentous fungus, Aspergillus oryzae, grown on rice is known as rice-koji, and is important as a starter for miso fermentation because of its prominent hydrolytic enzyme activities. Recently, commercial miso products have been supplemented with purinic ribonucleotides, such as inosine monophosphate (IMP) and guanine monophosphate, to enhance the characteristic umami taste of glutamate in miso. Because the purinic ribonucleotides are degraded by enzymes such as acid phosphatases in miso, heat inactivation is required prior to the addition of these flavorings. However, heat treatment is a costly process and reduces the quality of miso. Therefore, an approach to lower acid phosphatase activities in koji culture is necessary. Transcriptional analysis using an A. oryzae KBN8048 rice-koji culture showed that eight of the 13 acid phosphatase (aph) genes were significantly down-regulated by the addition of phosphoric acid in the preparation of the culture in a concentration-dependent manner, while aphC expression was markedly up-regulated under the same conditions. The eight down-regulated genes might be under the control of the functional counterpart of the Saccharomyces cerevisiae transcriptional activator Pho4, which specifically regulates phosphatase genes in response to the ambient phosphate availability. However, the regulatory mechanism of aphC was not clear. The IMP dephosphorylation activities in rice-koji cultures of KBN8048 and the aphC deletion mutant (ΔaphC) were reduced by up to 30% and 70%, respectively, in cultures with phosphoric acid, while protease and amylase activity, which is important for miso fermentation, was minimally affected. The miso products fermented using the rice-koji cultures of KBN8048 and ΔaphC prepared with phosphoric acid had reductions in IMP dephosphorylation activity of 80% and 90%, respectively, without any adverse effects on amylase and protease activities. Thus, preparing the A. oryzae rice-koji culture under phosphate-sufficient conditions preferentially produces a fermentation starter of miso exhibiting low purinic ribonucleotide dephosphorylation activity. Moreover, aphC is a potential breeding target to reduce purinic ribonucleotide degradation activity further in commercial miso products.


Assuntos
Fosfatase Ácida/metabolismo , Aspergillus oryzae/enzimologia , Microbiologia de Alimentos , Alimentos de Soja/microbiologia , Fosfatase Ácida/genética , Regulação para Baixo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Mutação , Oryza/microbiologia , Ácidos Fosfóricos/farmacologia , Glycine max/microbiologia
3.
Appl Environ Microbiol ; 78(8): 2819-29, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327593

RESUMO

The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.


Assuntos
Aspergillus oryzae/fisiologia , Genes Fúngicos Tipo Acasalamento , Sequência de Aminoácidos , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Aspergillus oryzae/isolamento & purificação , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , Microbiologia de Alimentos , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Genótipo , Análise em Microsséries , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...