Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 386: 129478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460021

RESUMO

The objective of this review is to encourage the technical development of biochar-assisted microbial fermentation. To this end, recent advances in biochar applications for microbial fermentation processes (i.e., non-methane products of hydrogen, acids, alcohols, and biofertilizer) have been critically reviewed, including process performance, enhanced mechanisms, and current research gaps. Key findings of enhanced mechanisms by biochar applications in biochemical conversion platforms are summarized, including supportive microbial habitats due to the immobilization effect, pH buffering due to alkalinity, nutrition supply due to being rich in nutrient elements, promoting electron transfer by acting as electron carriers, and detoxification of inhibitors due to high adsorption capacity. The current technical limitations and biochar's industrial applications in microbial fermentation processes are also discussed. Finally, suggestions like exploring functionalized biochar materials, biochar's automatic addition and pilot-scale demonstration are proposed. This review would further promote biochar applications in microbial fermentation processes for the production of non-methane products.


Assuntos
Reatores Biológicos , Carvão Vegetal , Fermentação , Ecossistema
2.
Waste Manag ; 156: 187-197, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493662

RESUMO

With the continuous rise of food waste (FW) throughout the world, a research effort to reveal its potential for bioenergy production is surging. There is a lack of harmonized information and publications available that evaluate the state-of-advance for FW-derived methane production process, particularly from an engineering and sustainability point of view. Anaerobic digestion (AD) has shown remarkable efficiency in the bioconversion of FW to methane. This paper reviews the current research progress, gaps, and prospects in pre-AD, AD, and post-AD processes of FW-derived methane production. Briefly, the review highlights innovative FW collection and optimization routes such as AI that enable efficient FW valorization processes. As weather changes and the FW sources may affect the AD efficiency, it is important to assess the spatio-seasonal variations and microphysical properties of the FW to be valorized. In that case, developing weather-resistant bioreactors and cost-effective mechanisms to modify the raw substrate morphology is necessary. An AI-guided reactor could have high performance when the internal environment of the centralized operation is monitored in real-time and not susceptible to changes in FW variety. Monitoring solvent degradation and fugitive gases during biogas purification is a challenging task, especially for large-scale plants. Furthermore, this review links scientific evidence in the field with full-scale case studies from different countries. It also highlights the potential contribution of ADFW to carbon neutrality efforts. Regarding future research needs, in addition to the smart collection scheme, attention should be paid to the management and utilization of FW impurities, to ensure sustainable AD operations.


Assuntos
Metano , Eliminação de Resíduos , Alimentos , Anaerobiose , Reatores Biológicos , Biocombustíveis
3.
Bioresour Technol ; 365: 128107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243261

RESUMO

Reactive composting is a promising technology for recovering valuable resources from food waste, while its manual regulation is laborious and time-consuming. In this study, machine learning (ML) technologies are adopted to enable automated composting by predicting compost maturity and providing process regulation. Four machine learning algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), Light Gradient Boosting Machine (LightGBM) and Multilayer Perceptron (MLP) are employed to predict the seed germination index (GI) and C/N ratio. Based on the best fusion model with the highest R2 of 0.977 and 0.986 for the multi-task prediction of GI and C/N ratio, the critical factors and their interactions with maturity are identified. Moreover, the ML model is validated on a composting reactor and the ML-based prediction application can provide regulation to ensure food waste decompose within the required time. In conclusion, this compost maturity prediction system automates the reactive composting, thus reducing labor costs.


Assuntos
Compostagem , Eliminação de Resíduos , Alimentos , Solo , Automação , Aprendizado de Máquina
4.
Bioresour Technol ; 360: 127565, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788392

RESUMO

This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.


Assuntos
Biocombustíveis , Resíduos Sólidos , Biocombustíveis/análise , Fermentação
5.
Bioresour Technol ; 358: 127381, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35644452

RESUMO

Bread is Europe's most wasted food, and the second most wasted food after potatoes in UK. Bread waste (BW) is a clean source of high-quality fermentable sugars. In this study, the potential of Enterobacter ludwigii to accumulate 2,3-butanediol (BDO) from BW was evaluated. Initially, the optimal inoculum size and yeast extract concentration were determined, followed by extraction of sugars from BW using acid and enzymatic hydrolysis. A glucose yield of 330-530 g/kg BW was obtained, and the sugars released were utilised for BDO production by E. ludwigii. The fed-batch cultivation using pure glucose and glucose rich hydrolysates from acid and enzymatic hydrolysis resulted in BDO titres of 144.5, 135.4, and 138.8 g/L, after 96 h, with yield of 0.47, 0.42 and 0.48 g/g yield, respectively. The innovation of the work is valorisation of BW to BDO with a circular biorefining approach and thus, reducing BW disposal and associated environmental burden.


Assuntos
Eliminação de Resíduos , Pão , Butileno Glicóis , Fermentação , Glucose
6.
Bioresour Technol ; 331: 125051, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33812137

RESUMO

A food waste treating system was proposed in this study by combining biochar-assisted high-solid anaerobic digestion and subsequent steam gasification of the digestate. The effect of solid level, biochar dosage in anaerobic digestion on the properties of biogas, syngas, and final biochar products were investigated. Results showed that at a high total solid level and biochar dosage of 25 g/L and 50 g/L, the accumulative methane yield reached 110.3 mL CH4/g VS and 126.7 mL CH4/g VS, respectively. From steam gasification of different digestates under 850 °C for 15 min, a maximum of 34.92 mmol/g for the hydrogen yield and 11.44 MJ/m3 for the higher heating value could be obtained for the syngas. Furthermore, the by-product produced from steam gasification was a nutrient-enriched porous biochar, which was suitable to be used as compost. This study demonstrated a pathway for food waste treating to produce methane-enriched biogas, hydrogen-enriched syngas, and nutrient-enriched biochar.


Assuntos
Eliminação de Resíduos , Vapor , Anaerobiose , Carvão Vegetal , Alimentos , Metano , Porosidade
7.
Bioresour Technol ; 310: 123401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32334361

RESUMO

This study evaluated the mixing - activate carbon nexus in anaerobic digestion with the aim of accelerating start-up of thermophilic anaerobic co-digestion of food waste and chicken manure using mesophilic anaerobic sludge as inoculum. Results showed that the methane yield in the continuous stirred reactor is 71.3% higher than that of intermittent agitated reactor, and the addition of activated carbon can further improve the yield of methane by 18.2%. Continuous mixing mode followed by intermittent mixing was proved to be an alternative strategy to accelerate start-up of thermophilic anaerobic digestion. The optimum mixing time of 120 s/hour were obtained using computational fluid dynamics modeling. Analysis of genomic annotation metabolism indicated that the addition of activated carbon enhanced the dominant metabolism pathways of amino acid, methane and energy. Results of enzymes gene expression suggested that carbohydrates esterases, glycoside hydrolases and glycosyl transferases were dominant, respectively.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Carvão Vegetal , Alimentos , Metano
8.
Sci Rep ; 7(1): 1269, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455509

RESUMO

A novel compact three-stage anaerobic digester (HM3) was developed to combine the advantages of high solids anaerobic digestion (AD) and wet AD for co-digestion of food waste and horse manure. By having three separate chambers in the three-stage anaerobic digester, three different functional zones were created for high-solids hydrolysis, acidogenesis and wet methanogenesis. The results showed that the functionalized partitioning in HM3 significantly accelerated the solubilization of solid organic matters and the formation of volatile fatty acids, resulting in an increase of 11~23% in methane yield. VS reduction in the HM3 presents the highest rate of 71% compared to the controls. Pyrosequencing analysis indicated that different microbial communities in terms of hydrolyzing bacteria, acidogenic bacteria and methanogenic archaea were selectively enriched in the three separate chambers of the HM3. Moreover, the abundance of the methanogenic archaea was increased by 0.8~1.28 times compared to controls.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Microbiologia de Alimentos , Esterco/microbiologia , Eliminação de Resíduos/métodos , Anaerobiose , Animais , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biota , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...