Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241397

RESUMO

7xxx aluminium series reach exceptional strength compared to other industrial aluminium alloys. However, 7xxx aluminium series usually exhibit Precipitate-Free Zones (PFZs) along grain boundaries, which favour intergranular fracture and low ductility. In this study, the competition between intergranular and transgranular fracture is experimentally investigated in the 7075 Al alloy. This is of critical importance since it directly affects the formability and crashworthiness of thin Al sheets. Using Friction Stir Processing (FSP), microstructures with similar hardening precipitates and PFZs, but with very different grain structures and intermetallic (IM) particle size distribution, were generated and studied. Experimental results showed that the effect of microstructure on the failure mode was significantly different for tensile ductility compared to bending formability. While the tensile ductility was significantly improved for the microstructure with equiaxed grains and smaller IM particles (compared to elongated grains and larger particles), the opposite trend was observed in terms of formability.

2.
Sci Rep ; 12(1): 8362, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589748

RESUMO

In this study, a meta-heuristic algorithm, named The Planet Optimization Algorithm (POA), inspired by Newton's gravitational law is proposed. POA simulates the motion of planets in the solar system. The Sun plays the key role in the algorithm as at the heart of search space. Two main phases, local and global search, are adopted for increasing accuracy and expanding searching space simultaneously. A Gauss distribution function is employed as a technique to enhance the accuracy of this algorithm. POA is evaluated using 23 well-known test functions, 38 IEEE CEC benchmark test functions (CEC 2017, CEC 2019) and three real engineering problems. The statistical results of the benchmark functions show that POA can provide very competitive and promising results. Not only does POA require a relatively short computational time for solving problems, but also it shows superior accuracy in terms of exploiting the optimum.

3.
Sci Rep ; 11(1): 23809, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893674

RESUMO

In this paper, a new method in forecasting the horizontal displacement of diaphragm wall (D.W.) for high-rise buildings is introduced. A new stochastic optimizer, called Planet Optimization Algorithm (P.O.A.), is employed to assess how proper finite element (F.E.) simulation is against field data. The process is adopted for a real phased excavation measured at the field. To automatically run the iterative optimization tasks, a source code is constructed directly in the Geotechnical Engineering Software (PLAXIS) by using Python to ensure that the operation between optimization algorithm and F.E. simulations are smooth to guarantee the accuracy of the complex calculation for the soil problem. The proposed process consists of two steps. (1) The parameters will be optimized at the early phases of the excavation. (2) The responses of D.W. displacements are forecasted at the subsequent phases. The aim of the process is to predict the displacements of D.W. of the building from the result of the nearby excavation or to provide early warning about the risks of excavation that may happen under vital phases. The proposed procedure also provides an effective method for optimization-based soil parameters updating in real engineering practice.

4.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372452

RESUMO

Identifying cracks in the incipient state is essential to prevent the failure of engineering structures. Detection methods relying on the analysis of the changes in modal parameters are widely used because of the advantages they present. In our previous research, we found that eigenfrequencies were capable of indicating the position and depth of damage when sufficient vibration modes were considered. The damage indicator we developed was based on the relative frequency shifts (RFS). To calculate the RFSs for various positions and depths of a crack, we established a mathematical relation that involved the squared modal curvatures in the healthy state and the deflection of the healthy and damaged beam under dead mass, respectively. In this study, we propose to calculate the RFS for beams with several cracks by applying the superposition principle. We demonstrate that this is possible if the cracks are far enough from each other. In fact, if the cracks are close to each other, the superposition method does not work and we distinguish two cases: (i) when the cracks affect the same beam face, the frequency drop is less than the sum of the individual frequency drops, and (ii) on the contrary, cracks on opposite sides cause a decrease in frequency, which is greater than the sum of the frequency drop due to individual damage. When the RFS curves are known, crack assessment becomes an optimization problem, the cost function being the distance between the measured RFSs and all possible RFSs for several vibration modes. Thus, the RFS constitutes a benchmark that characterizes damage using only the eigenfrequencies. We can accurately locate multiple cracks and estimate their severity through experiments and thus prove the reliability of the proposed method.


Assuntos
Algoritmos , Vibração , Reprodutibilidade dos Testes
5.
Materials (Basel) ; 14(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917650

RESUMO

Fretting wear is a common phenomenon that happens between contact parts when there is an oscillatory relative movement. To investigate wear characteristics history in the fretting process, the finite element method (FEM) is commonly applied to simulate the fretting by considering the wear in the model. In most literature publications, the wear coefficient is considered as a constant, which is not a real case based on the experimental results. To consider the variation of wear coefficient, a double-linear model is applied in this paper, and the tribologically transformed structure (TTS) phase is considered in the study of the wear coefficient variation model. By using these models for variable wear coefficient for both flat and cylinder, the difference of wear characteristics, plastic strain, and stress between variable wear coefficient model (VWCM) and constant wear coefficient model (CWCM) are analyzed. The results show that the variable wear coefficient has no significant effect on the wear characteristic at the end of the process in the gross sliding regime. However, in the partial slip regime, the effect of variable wear coefficient on wear characteristics is significant. Due to the difference in contact geometry in the fretting process between VWCM and CWCM, the tangential and shear stress and equivalent plastic strain also show differences during the fretting process.

6.
Materials (Basel) ; 10(8)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28773218

RESUMO

Output-based structural damage detection is becoming increasingly appealing due to its potential in real engineering applications without any restriction regarding excitation measurements. A new transmissibility-based damage detection approach is presented in this study by combining transmissibility with correlation analysis in order to strengthen its performance in discriminating damaged from undamaged scenarios. From this perspective, damage detection strategies are hereafter established by constructing damage-sensitive indicators from a derived transmissibility. A cantilever beam is numerically analyzed to verify the feasibility of the proposed damage detection procedure, and an ASCE (American Society of Civil Engineers) benchmark is henceforth used in the validation for its application in engineering structures. The results of both studies reveal a good performance of the proposed methodology in identifying damaged states from intact states. The comparison between the proposed indicator and the existing indicator also affirms its applicability in damage detection, which might be adopted in further structural health monitoring systems as a discrimination criterion. This study contributed an alternative criterion for transmissibility-based damage detection in addition to the conventional ones.

7.
J Occup Health ; 59(2): 177-186, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28111414

RESUMO

OBJECTIVES: The main objective of this study is to examine the relationship between indicators of non-standard work arrangements, including precarious contract, long working hours, multiple jobs, shift work, and work-related accident absence, using a representative Belgian sample and considering several socio-demographic and work characteristics. METHODS: This study was based on the data of the fifth European Working Conditions Survey (EWCS). For the analysis, the sample was restricted to 3343 respondents from Belgium who were all employed workers. The associations between non-standard work arrangements and work-related accident absence were studied with multivariate logistic regression modeling techniques while adjusting for several confounders. RESULTS: During the last 12 months, about 11.7% of workers were absent from work because of work-related accident. A multivariate regression model showed an increased injury risk for those performing shift work (OR 1.546, 95% CI 1.074-2.224). The relationship between contract type and occupational injuries was not significant (OR 1.163, 95% CI 0.739-1.831). Furthermore, no statistically significant differences were observed for those performing long working hours (OR 1.217, 95% CI 0.638-2.321) and those performing multiple jobs (OR 1.361, 95% CI 0.827-2.240) in relation to work-related accident absence. Those who rated their health as bad, low educated workers, workers from the construction sector, and those exposed to biomechanical exposure (BM) were more frequent victims of work-related accident absence. No significant gender difference was observed. CONCLUSION: Indicators of non-standard work arrangements under this study, except shift work, were not significantly associated with work-related accident absence. To reduce the burden of occupational injuries, not only risk reduction strategies and interventions are needed but also policy efforts are to be undertaken to limit shift work. In general, preventive measures and more training on the job are needed to ensure the safety and well-being of all workers.


Assuntos
Absenteísmo , Acidentes de Trabalho/estatística & dados numéricos , Traumatismos Ocupacionais/epidemiologia , Traumatismos Ocupacionais/etiologia , Adulto , Bélgica/epidemiologia , Emprego , Feminino , Nível de Saúde , Inquéritos Epidemiológicos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores Socioeconômicos , Tolerância ao Trabalho Programado , Carga de Trabalho , Adulto Jovem
8.
Waste Manag ; 43: 19-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26123978

RESUMO

Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools.


Assuntos
Eliminação de Resíduos/instrumentação , Eliminação de Resíduos/métodos , Calibragem , Cidades , Desenho de Equipamento , Análise de Elementos Finitos , Funções Verossimilhança , Modelos Lineares , Tamanho da Partícula , Análise de Regressão , Rotação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA