Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 8(1): 69-75, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603191

RESUMO

Gastrointestinal polyps are treated as the precursors of cancer development. So, possibility of cancers can be reduced at a great extent by early detection and removal of polyps. The most used diagnostic modality for gastrointestinal polyps is video endoscopy. But, as an operator dependant procedure, several human factors can lead to miss detection of polyps. In this peper, an improved computer aided polyp detection method has been proposed. Proposed improved method can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention. Color wavelet features and convolutional neural network features are extracted from endoscopic images, which are used for training a support vector machine. Then a target endoscopic image will be given to the classifier as input in order to find whether it contains any polyp or not. If polyp is found, it will be marked automatically. Experiment shows that, color wavelet features and convolutional neural network features together construct a highly representative of endoscopic polyp images. Evaluations on standard public databases show that, proposed system outperforms state-of-the-art methods, gaining accuracy of 98.34%, sensitivity of 98.67% and specificity of 98.23%. In this paper, the strength of color wavelet features and power of convolutional neural network features are combined. Fusion of these two methodology and use of support vector machine results in an improved method for gastrointestinal polyp detection. An analysis of ROC reveals that, proposed method can be used for polyp detection purposes with greater accuracy than state-of-the-art methods.

2.
Int J Biomed Imaging ; 2017: 9545920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894460

RESUMO

Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW) features and convolutional neural network (CNN) features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM). Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%.

3.
Springerplus ; 5: 636, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330902

RESUMO

The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.

4.
Springerplus ; 4: 153, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932365

RESUMO

Conventional lithography-based VLSI design technology deployed to optimize low-powered-computing and higher scale integration of semiconductor components. However, this downscaling trend confronts serious challenges of tunneling and leakage current increment to the Complementary Metal-Oxide-Semiconductor (CMOS) technology on nanoscale regimes. To resolve the physical restriction of the CMOS, Quantum-dot Cellular Automata (QCA) technology dedicates for the nanoscale technology that embrace a new information transformation technique. However, QCA is limited to the design of the sequential and combinational circuits only. This paper presents some highly scalable features reversible logic gate for the QCA technology. In addition, proposed layout compared with CMOS technology, offer a better reduction in size up to 233 times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...