Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(3): 1429-1442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038649

RESUMO

This study presents the initial structural model of L-haloacid dehalogenase (DehLBHS1) from Bacillus megaterium BHS1, an alkalotolerant bacterium known for its ability to degrade halogenated environmental pollutants. The model provides insights into the structural features of DehLBHS1 and expands our understanding of the enzymatic mechanisms involved in the degradation of these hazardous pollutants. Key amino acid residues (Arg40, Phe59, Asn118, Asn176, and Trp178) in DehLBHS1 were identified to play critical roles in catalysis and molecular recognition of haloalkanoic acid, essential for efficient binding and transformation of haloalkanoic acid molecules. DehLBHS1 was modeled using I-TASSER, yielding a best TM-score of 0.986 and an RMSD of 0.53 Å. Validation of the model using PROCHECK revealed that 89.2% of the residues were located in the most favored region, providing confidence in its structural accuracy. Molecular docking simulations showed that the non-simulated DehLBHS1 preferred 2,2DCP over other substrates, forming one hydrogen bond with Arg40 and exhibiting a minimum energy of -2.5 kJ/mol. The simulated DehLBHS1 exhibited a minimum energy of -4.3 kJ/mol and formed four hydrogen bonds with Arg40, Asn176, Asp9, and Tyr11, further confirming the preference for 2,2DCP. Molecular dynamics simulations supported this preference, based on various metrics, including RMSD, RMSF, gyration, hydrogen bonding, and molecular distance. MM-PBSA calculations showed that the DehLBHS1-2,2-DCP complex had a markedly lower binding energy (-21.363 ± 1.26 kcal/mol) than the DehLBHS1-3CP complex (-14.327 ± 1.738 kcal/mol). This finding has important implications for the substrate specificity and catalytic function of DehLBHS1, particularly in the bioremediation of 2,2-DCP in contaminated alkaline environments. These results provide a detailed view of the molecular interactions between the enzyme and its substrate and may aid in the development of more efficient biocatalytic strategies for the degradation of halogenated compounds.Communicated by Ramaswamy H. Sarma.


Assuntos
Bacillus megaterium , Hidrolases , Simulação de Acoplamento Molecular , Turquia , Lagos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...