Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 14(1): 170, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34416924

RESUMO

BACKGROUND: Biogas can be upgraded to methane biologically by adding H2 to biogas reactors. The process is called biological methanation (BM) and can be done in situ in a regular biogas reactor or the biogas can be transferred to a separate ex situ upgrading reactor. The hybrid BM concept, a combination of in situ and ex situ BM, has received little attention, and only a few studies have been reported. The hybrid BM has the advantage of resolving the issue of pH increment during in situ BM, while the size of the ex situ BM reactor could be reduced. RESULTS: In this study, the efficiency of in situ and hybrid biological methanation (BM) for upgrading raw biogas was investigated. The hybrid BM system achieved a CH4 yield of 257 mL gVS-1 when degrading a feedstock blend of manure and cheese waste. This represented an increase in methane yield of 76% when compared to the control reactor with no H2 addition. A 2:1 H2:CO2 ratio resulted in stable reactor performance, while a 4:1 ratio resulted in a high accumulation of volatile fatty acids. H2 consumption rate was improved when a low manure-cheese waste ratio (90%:10%) was applied. Furthermore, feeding less frequently (every 48 h) resulted in a higher CH4 production from CO2 and H2. Methanothermobacter was found to dominate the archaeal community in the in situ BM reactor, and its relative abundance increased over the experimental time. Methanosarcina abundance was negatively affected by H2 addition and was nearly non-existent at the end of the experiment. CONCLUSIONS: Our results show that hybrid BM outperforms in situ BM in terms of total CH4 production and content of CH4 in the biogas. In comparison to in situ BM, the use of hybrid BM increased CH4 yield by up to 42%. Furthermore, addition of H2 at 2:1 H2:CO2 ratio in in situ BM resulted in stable reactor operation.

2.
Environ Technol ; 41(8): 997-1006, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30149787

RESUMO

Wheat straw and animal wastes are important feedstock for biogas production in Europe. Yet, the high content of lignocellulosic and refractory materials causes the process to be relatively slow. Therefore, pretreatment methods have been proposed to shorten the hydrolysis phase. The present study examined the effectiveness of alkali pre-treatment (AP), ultrasonic pre-treatment (UP), and alkali-ultrasonic pre-treatment (AUP) applied on wheat straw (WS), solid fraction of cattle manure (SCM) and solid fraction of slaughterhouse waste (SSHW), by monitoring solubilisation ratio, anaerobic biodegradability and methane yield. The results indicate that the solubilisation ratio of the substrates improved regardless of the types of pre-treatment applied. Though, AP was more effective on WS and SSHW than other pre-treatments (UP and AUP), with approximately 47% and 17% extra methane, respectively. Moreover, AP of SCM caused an increased in methane production rate by 100% and minimised lag phase from 16 days to 1 day during anaerobic digestion. Based on Danish conditions, only AP of WS was economical prior to the biogas process due to high extra methane yield. A positive energy budget of 8 € t-1 VS was calculated. High-energy consumption during UP and AUP in laboratory scale hindered the positive benefits of these pre-treatments.


Assuntos
Esterco , Triticum , Matadouros , Álcalis , Anaerobiose , Animais , Biocombustíveis , Bovinos , Europa (Continente) , Metano , Ultrassom
3.
Biotechnol Biofuels ; 12: 104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164923

RESUMO

BACKGROUND: Commercial biogas upgrading facilities are expensive and consume energy. Biological biogas upgrading may serve as a low-cost approach because it can be easily integrated with existing facilities at biogas plants. The microbial communities found in anaerobic digesters typically contain hydrogenotrophic methanogens, which can use hydrogen (H2) as a reducing agent for conversion of carbon dioxide (CO2) into methane (CH4). Thus, biological biogas upgrading through the exogenous addition of H2 into biogas digesters for the conversion of CO2 into CH4 can increase CH4 yield and lower CO2 emission. RESULTS: The addition of 4 mol of H2 per mol of CO2 was optimal for batch biogas reactors and increased the CH4 content of the biogas from 67 to 94%. The CO2 content of the biogas was reduced from 33 to 3% and the average residual H2 content was 3%. At molar H2:CO2 ratios > 4:1, all CO2 was converted into CH4, but the pH increased above 8 due to depletion of CO2, which negatively influenced the process stability. Additionally, high residual H2 content in these reactors was unfavourable, causing volatile fatty acid accumulation and reduced CH4 yields. The reactor microbial communities shifted in composition over time, which corresponded to changes in the reactor variables. Numerous taxa responded to the H2 inputs, and in particular the hydrogenotrophic methanogen Methanobacterium increased in abundance with addition of H2. In addition, the apparent rapid response of hydrogenotrophic methanogens to intermittent H2 feeding indicates the suitability of biological methanation for variable H2 inputs, aligning well with fluctuations in renewable electricity production that may be used to produce H2. CONCLUSIONS: Our research demonstrates that the H2:CO2 ratio has a significant effect on reactor performance during in situ biological methanation. Consequently, the H2:CO2 molar ratio should be kept at 4:1 to avoid process instability. A shift toward hydrogenotrophic methanogenesis was indicated by an increase in the abundance of the obligate hydrogenotrophic methanogen Methanobacterium.

4.
Sci Total Environ ; 595: 651-659, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402918

RESUMO

Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS-1of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS-1d-1, being a favourable case for an eventual scale-up of the combined process.

5.
Bioresour Technol ; 198: 124-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386414

RESUMO

This study investigated the potentials of forbs; caraway, chicory, red clover and ribwort plantain as substrates for biogas production. One-, two- and four-cut systems were implemented and the influence on dry matter yields, chemical compositions and methane yields were examined. The two- and four-cut systems resulted in higher dry matter yields (kg [total solid, TS] ha(-1)) compared to the one-cut system. The effect of plant compositions on biogas potentials was not evident. Cumulative methane yields (LCH4kg(-1) [volatile solid, VS]) were varied from 279 to 321 (chicory), 279 to 323 (caraway), 273 to 296 (ribwort plantain), 263 to 328 (red clover) and 320 to 352 (grass-clover mixture), respectively. Methane yield was modelled by modified Gompertz equation for comparison of methane production rate. Near infrared spectroscopy showed potential as a tool for biogas and chemical composition prediction. The best prediction models were obtained for methane yield at 29 days (99 samples), cellulose, acid detergent fibre, neutral detergent fibre and crude protein, (R(2)>0.9).


Assuntos
Biocombustíveis , Medicago/química , Poaceae/química , Espectroscopia de Luz Próxima ao Infravermelho , Fibras na Dieta , Metano/metabolismo
6.
Microb Biotechnol ; 8(5): 787-800, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25737010

RESUMO

In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.


Assuntos
Archaea/classificação , Bactérias/classificação , Reatores Biológicos/microbiologia , Biota , Esterco/microbiologia , Metano/metabolismo , Anaerobiose , Animais , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bovinos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Análise de Sequência de DNA , Temperatura
7.
J Environ Sci (China) ; 19(1): 103-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913162

RESUMO

Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process. Two types of activation namely; thermal activation at 300, 500 and 800 degrees C and physical activation at 150 degrees C (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800 degrees C showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800 degrees C. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of activated carbon) compared the activated carbon from other sources and processes.


Assuntos
Carbono/isolamento & purificação , Óleos de Plantas/química , Árvores/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Eliminação de Resíduos
8.
J Environ Sci (China) ; 18(3): 446-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17294638

RESUMO

The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800 degrees C, and physical activation at 15 degrees C (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800 degrees C showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.


Assuntos
Carvão Vegetal/química , Temperatura Alta , Fenóis/química , Óleos de Plantas/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Óleo de Palmeira , Fenóis/análise , Fenóis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...