Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35329552

RESUMO

This work considers the fabrication of ceramic parts with the help of an additive manufacturing process, robocasting, in which a paste with suspended particles is robotically extruded. Within the final part, the material properties depend on the orientation of the particles. A prediction of the particle orientation is challenging as the part usually undergoes multiple processing steps with varying contributions to the orientation. As the main contribution to the final particle orientation arises from the extrusion process, many corresponding prediction models have been suggested. Robocasting involves, however, further processing steps that are less studied as they have a smaller influence on the orientation. One of the processing steps is drying by natural convection, which follows directly after the extrusion process. A quantification of the reorientation that occurs during drying is mostly unknown and usually neglected in the models. Therefore, we studied the amount of reorientation of suspended particles in robocasted green filaments during drying in detail. For our study, we applied the discrete element method, as it meets various requirements: The exact particle geometry can be resolved precisely; particle-particle interactions can be described; the paste composition is reproduced exactly; the initial particle orientation can be set in accordance with the prediction from the analytical models for the extrusion part; macroscopic force laws exist to represent capillary forces due to the remaining fluid phase that remains during drying. From our study, we concluded that the magnitude of particle reorientation during drying is small compared to the orientation occurring during the extrusion process itself. Consequently, reorientation during drying might further be neglected within analytical orientation prediction models.

2.
Materials (Basel) ; 14(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34832140

RESUMO

This paper presents the results of microstructural analysis of novel preceramic paper-derived SiCf/SiC composites fabricated by spark plasma sintering. The sintering temperature and pressure were 2100/2200 °C and 60/100 MPa, respectively. The content of fibers in the composites was approx. 10 wt %. The SiCf/SiC composites were analyzed by positron annihilation methods, X-ray diffraction technology, scanning electron microscopy, and Raman spectroscopy. Longer sintering time causes the proportion of the 6H-SiC composition to increase to ~80%. The increase in sintering temperature from 2100 °C to 2200 °C leads to partial transition of 4H-SiC to 6H-SiC during the sintering process, and the long-life component of positrons indicates the formation of Si vacancies. The Raman characteristic peaks of turbostratic graphite appear in the Raman spectrum of SiC fibers, this is caused by the diffusion of carbon from the surface of the SiC fiber and the preceramic paper during the high-temperature sintering process.

3.
Materials (Basel) ; 11(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597310

RESUMO

In a previous work, an ink based on a preceramic polymer, SiC fillers, and chopped carbon fibers was proposed for the production of Ceramic Matrix Composite (CMC) structures by Direct Ink Writing (DIW) and subsequent pyrolysis. Thanks to the shear stresses generated at the nozzle tip during extrusion, carbon fibers can be aligned along the printing direction. Fumed silica was added to the ink in order to enhance its rheological properties; however, the printed structures still showed some deformation in the Z direction. In this work, a second ink was successfully developed to limit deformation and at the same time avoid the addition of fumed silica, which limited the potential temperature of application of the composites. Instead, the positive role of the preceramic polymer on the ink rheology was exploited by increasing its concentration in the ink. Rheological characterization carried out on both inks confirmed that they possessed Bingham shear thinning behavior and fast viscosity recovery. Single filaments with different diameters (~310 µm and ~460 µm) were produced with the latter ink by DIW and subsequent pyrolysis. Tested under a four-point flexural test, the filaments showed a mean flexural strength above 30 MPa, graceful failure, and fiber pull-out. The results of this work suggest that CMC components can effectively be fabricated via DIW of a preceramic ink with embedded short fibers; the preceramic polymer is able to provide the desired rheology for the process and to develop a dense matrix capable of incorporating both fibers and ceramic particles, whereas the fibers addition contributes to an increase of the fracture toughness of the material and to the development of a graceful failure mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...