Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Pathol ; 60(5): 547-559, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264636

RESUMO

Coelomic fluid surrounds the internal organs of asteroid echinoderms (asteroids, otherwise known as sea stars or starfish) and plays an essential role in the immune system, as well as in the transport of respiratory gases, nutrients, waste products, and reproductive mediators. Due to its importance in physiology and accessibility for nonlethal diagnostic sampling, coelomic fluid of asteroids provides an excellent sample matrix for health evaluations and can be particularly useful in disease and mortality investigations. This is especially important in light of recent increases in the number of affected individuals and species, larger geographic scope, and increased observed frequency of sea star wasting events compared with historic accounts of wasting. This review summarizes the current knowledge about coelomocytes, the effector cell of the asteroid immune system; coelomic fluid electrolytes, osmolality, acid-base status and respiratory gases, and microbiota; and genomic, transcriptomic, and proteomic investigations of coelomic fluid. The utility of coelomic fluid analysis for assessing stressor responses, diseases, and mortality investigations is considered with knowledge gaps and future directions identified. This complex body fluid provides an exciting opportunity to increase our understanding of this unique and ecologically important group of animals.


Assuntos
Proteômica , Estrelas-do-Mar , Animais , Estrelas-do-Mar/genética , Transcriptoma , Perfilação da Expressão Gênica/veterinária , Gases
2.
Front Vet Sci ; 9: 973376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458054

RESUMO

Welfare considerations and regulations for invertebrates have lagged behind those for vertebrates, despite invertebrates comprising more than 95% of earth's species. Humans interact with and use aquatic invertebrates for exhibition in zoos and aquaria, as pets, research subjects, and important food sources. Recent research has indicated that aquatic invertebrates, in particular cephalopod mollusks and decapod crustaceans, experience stress and may be able to feel pain. With this article, we present results of a survey on attitudes of aquatic animal health professionals toward aquatic invertebrate welfare and provide practical recommendations for advancing aquatic invertebrate welfare across four areas of opportunity: use of anesthesia, analgesia, and euthanasia; development of less invasive diagnostic and research sampling methods based on 3R principles; use of humane slaughter methods for aquatic invertebrates; and reducing impacts of invasive procedures in aquaculture and fisheries. We encourage consideration of these opportunities to achieve far-reaching improvements in aquatic invertebrate welfare.

3.
Biol Bull ; 243(1): 50-75, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36108034

RESUMO

AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.


Assuntos
Ecossistema , Estrelas-do-Mar , Animais , Biologia
4.
Animals (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206249

RESUMO

Sea stars in research are often lethally sampled without available methodology to render them insensible prior to sampling due to concerns over sufficient sample quality for applied molecular techniques. The objectives of this study were to describe an inexpensive and effective two-step euthanasia method for adult common sea stars (Asterias rubens) and to demonstrate that high-quality RNA samples for further use in downstream molecular analyses can be obtained from pyloric ceca of MgCl2-immersed sea stars. Adult common sea stars (n = 15) were immersed in a 75 g/L magnesium chloride solution until they were no longer reactive to having their oral surface tapped with forceps (mean: 4 min, range 2-7 min), left immersed for an additional minute, and then sampled with sharp scissors. RNA from pyloric ceca (n = 10) was isolated using a liquid-liquid method, then samples were treated with DNase and analyzed for evaluation of RNA integrity number (RIN) for assessment of the quantity and purity of intact RNA. Aversive reactions to magnesium chloride solution were not observed and no sea stars regained spontaneous movement or reacted to sampling. The calculated RIN ranged from 7.3-9.8, demonstrating that the combination of animal welfare via the use of anesthesia and sampling for advanced molecular techniques is possible using this low-cost technique.

5.
Front Vet Sci ; 7: 131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211434

RESUMO

Sea Star Wasting Syndrome (SSWS) is one of the largest marine wildlife die-offs ever recorded, killing millions of sea stars from more than 20 Asteroid species from Alaska to Mexico from 2013 to 2015 from yet undetermined cause(s). Coelomic fluid surrounds the sea star's organs, playing critical roles in numerous systemic processes, including nutrient transportation and immune functions. Coelomocytes, which are cellular components of coelomic fluid and considered functionally equivalent to vertebrate leukocytes, are responsible for innate cell-mediated immunity. The objectives of this study were to (1) evaluate changes in coelomic fluid chemistry, coelomocyte counts, and cytology from ochre sea stars (Pisaster ochraceus) (n = 55) with clinical signs consistent with SSWS at varying intensity (SSWS score 1: n = 4, score 2: n = 2, score 3: n = 3, score 4: n = 18, score 5: n = 26) in comparison to coelomic fluid from clinically normal sea stars (n = 26) and to (2) correlate SSWS score with cellular and biochemical analytes. SSWS-affected sea stars had wider ranges of all electrolytes, except calcium; statistically significantly higher chloride, osmolality, and total protein; lower calcium; and higher coelomocyte counts when compared to clinically normal sea stars maintained under identical environmental conditions. Free and/or phagocytized bacteria were noted in 29% (16 of 55) coelomic fluid samples from SSWS-affected sea stars but were absent in clinically normal sea stars. SSWS score correlated significantly with increasing chloride concentration, osmolality, and coelomocyte counts. These chemistry and cytological findings in coelomic fluid of SSWS-affected sea stars provide insight into the pathophysiology of SSWS as these results suggest osmo- and calcium dysregulation, coelomocyte responses, and presumptive opportunistic bacterial infection in SSWS-affected sea stars. This information provides potential future research applications for the development of treatment strategies for sea stars in managed care and for understanding the complexity of various biochemical and cellular pathophysiological mechanisms involved in sea star wasting.

6.
J Aquat Anim Health ; 31(3): 239-243, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170775

RESUMO

Coelomic fluid sampling is a noninvasive technique that is used to access the body fluid of sea stars for diagnostics and research. Given recent mortality events including sea star wasting disease, which has killed millions of sea stars along the Pacific coast since 2013, there is a need for validated diagnostic tests to evaluate sea star health. The objectives of this study were to establish coelomic fluid reference intervals for clinically normal ochre sea stars Pisaster ochraceus in an open system aquarium, to describe the cytologic findings, and to compare the chemistries of coelomic fluid with open system tank water. Coelomic fluid from 26 clinically normal sea stars was sampled for coelomocyte counts, cytologic evaluation, and biochemical analysis including magnesium, sodium, potassium, chloride, calcium, and total protein. The number of coelomocytes and total protein did not fit normal distribution and were excluded from analyses. Reference intervals were established for other chemistry analytes. There was no statistical difference in biochemistries between sea star coelomic fluid and water from five open system tanks, which supports previous evidence that sea stars are osmoconformers. Very low numbers of coelomocytes were observed cytologically. These results provide a useful baseline and diagnostic tool for health assessments of sea stars.


Assuntos
Animais de Zoológico , Estrelas-do-Mar/química , Estrelas-do-Mar/fisiologia , Animais , Animais de Zoológico/fisiologia , Líquidos Corporais/química , Contagem de Células , Testes Diagnósticos de Rotina , Íons/análise , Proteínas/análise , Valores de Referência , Estrelas-do-Mar/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...