Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 816062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281903

RESUMO

Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.

2.
J Med Chem ; 65(5): 4085-4120, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35184554

RESUMO

The dramatic increase in the prevalence of multi-drug resistant Gram-negative bacterial infections and the simultaneous lack of new classes of antibiotics is projected to result in approximately 10 million deaths per year by 2050. We report on efforts to target the Gram-negative ATP-binding cassette (ABC) transporter MsbA, an essential inner membrane protein that transports lipopolysaccharide from the inner leaflet to the periplasmic face of the inner membrane. We demonstrate the improvement of a high throughput screening hit into compounds with on-target single digit micromolar (µM) minimum inhibitory concentrations against wild-type uropathogenic Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. A 2.98 Å resolution X-ray crystal structure of MsbA complexed with an inhibitor revealed a novel mechanism for inhibition of an ABC transporter. The identification of a fully encapsulated membrane binding site in Gram-negative bacteria led to unique physicochemical property requirements for wild-type activity.


Assuntos
Escherichia coli , Lipopolissacarídeos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia
3.
Bioorg Med Chem Lett ; 50: 128335, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425201

RESUMO

Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Med Chem ; 64(16): 11841-11856, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34251202

RESUMO

Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carbolinas/uso terapêutico , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Carbolinas/química , Carbolinas/farmacocinética , Cães , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacocinética , Feminino , Humanos , Células MCF-7 , Macaca fascicularis , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Ther ; 20(6): 1112-1120, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722856

RESUMO

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Calicheamicinas/uso terapêutico , Imunoconjugados/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Calicheamicinas/farmacologia , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Camundongos
6.
Clin Ophthalmol ; 15: 307-313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33536739

RESUMO

BACKGROUND: Concerns had been raised for the potential hazard of SARS-CoV-2 transmissions via aerosols and fluid droplets during cataract surgeries amid the COVID-19 pandemic. This study aims to evaluate the rate of visible aerosol generation and fluid spillage from surgical wounds during phacoemulsification in human subjects. METHODS: This is a prospective consecutive interventional case series. High-resolution video captures of 30 consecutive uncomplicated phacoemulsification surgeries, performed by 3 board-certified specialists in ophthalmology, were assessed by 2 independent and masked investigators for intraoperative aerosolization and fluid spillage. Water-contact indicator tape was mounted on the base of the operating microscope, around the objective lens, to detect any fluid contact. RESULTS: No visible intraoperative aerosolization was detected in any of the cases, irrespective of different surgical practices among the surgeons with regard to wound size and position, lens fragmentation technique, power settings and means of ocular lubrication, or the different densities of cataract encountered. Large droplets spillage was noted from the paracentesis wounds in 70% of the cases. For all cases where fluid spill was detected on video, there was no fluid contact detected on the water-contact indicator tape. CONCLUSION: Visible aerosolization was not detected during phacoemulsification in our case series. Although the rate of fluid spillage was high, the lack of detectable contact with the indicator tape suggested that these large droplets posed no significant infectious risks to members of the surgical team.

7.
J Med Chem ; 64(5): 2534-2575, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33596065

RESUMO

The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Dipeptídeos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Imunoconjugados/farmacologia , Proteólise/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/farmacocinética , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Oxirredutases/imunologia , Células PC-3 , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
J Med Chem ; 64(5): 2576-2607, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33596073

RESUMO

Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/síntese química , Dipeptídeos/farmacocinética , Dipeptídeos/uso terapêutico , Feminino , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Camundongos SCID , Oxirredutases/imunologia , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Med Chem ; 63(17): 9603-9622, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787101

RESUMO

Cytotoxic pyrrolobenzodiazepine (PBD)-dimer molecules are frequently utilized as payloads for antibody-drug conjugates (ADCs), and many examples are currently in clinical development. In order to further explore this ADC payload class, the physicochemical properties of various PBD-dimer molecules were modified by the systematic introduction of acidic and basic moieties into their chemical structures. The impact of these changes on DNA binding, cell membrane permeability, and in vitro antiproliferation potency was, respectively, determined using a DNA alkylation assay, PAMPA assessments, and cell-based cytotoxicity measurements conducted with a variety of cancer lines. The modified PBD-dimer compounds were subsequently incorporated into CD22-targeting ADCs, and these entities were profiled in a variety of in vitro and in vivo experiments. The introduction of a strongly basic moiety into the PBD-dimer scaffold afforded a conjugate with dramatically worsened mouse tolerability properties relative to ADCs derived from related payloads, which lacked the basic group.


Assuntos
Benzodiazepinas/química , Dimerização , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Pirróis/química , Segurança , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , DNA/química , DNA/metabolismo , Humanos , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Modelos Moleculares , Conformação de Ácido Nucleico
10.
ACS Med Chem Lett ; 11(6): 1342-1347, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551022

RESUMO

Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.

11.
ACS Med Chem Lett ; 11(3): 327-333, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184965

RESUMO

IRAK4 kinase activity transduces signaling from multiple IL-1Rs and TLRs to regulate cytokines and chemokines implicated in inflammatory diseases. As such, there is high interest in identifying selective IRAK4 inhibitors for the treatment of these disorders. We previously reported the discovery of potent and selective dihydrobenzofuran inhibitors of IRAK4. Subsequent studies, however, showed inconsistent inhibition in disease-relevant pharmacodynamic models. Herein, we describe application of a human whole blood assay to the discovery of a series of benzolactam IRAK4 inhibitors. We identified potent molecule 19 that achieves robust in vivo inhibition of cytokines relevant to human disease.

12.
Bioorg Med Chem Lett ; 30(4): 126907, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31902710

RESUMO

Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.


Assuntos
Anticorpos Monoclonais/imunologia , Portadores de Fármacos/química , Receptor alfa de Estrogênio/imunologia , Anticorpos Monoclonais/química , Antineoplásicos/química , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Receptor alfa de Estrogênio/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Células MCF-7 , Proteólise/efeitos dos fármacos , Receptor ErbB-2/metabolismo
13.
ChemMedChem ; 15(1): 17-25, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31674143

RESUMO

The ability to selectively degrade proteins with bifunctional small molecules has the potential to fundamentally alter therapy in a variety of diseases. However, the relatively large size of these chimeric molecules often results in challenging physico-chemical properties (e. g., low aqueous solubility) and poor pharmacokinetics which may complicate their in vivo applications. We recently discovered an exquisitely potent chimeric BET degrader (GNE-987) which exhibited picomolar cell potencies but also demonstrated low in vivo exposures. In an effort to improve the pharmacokinetic properties of this molecule, we discovered the first degrader-antibody conjugate by attaching GNE-987 to an anti-CLL1 antibody via a novel linker. A single IV dose of the conjugate afforded sustained in vivo exposures that resulted in antigen-specific tumor regressions. Enhancement of a chimeric protein degrader with poor in vivo properties through antibody conjugation thereby expands the utility of directed protein degradation as both a biological tool and a therapeutic possibility.


Assuntos
Anticorpos Monoclonais/química , Proteínas de Ciclo Celular/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Imunoconjugados/química , Fatores de Transcrição/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Feminino , Meia-Vida , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos SCID , Ligação Proteica , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Mitogênicos/imunologia , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/antagonistas & inibidores , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Bioorg Med Chem Lett ; 29(16): 2294-2301, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307887

RESUMO

CDK4 and CDK6 are kinases with similar sequences that regulate cell cycle progression and are validated targets in the treatment of cancer. Glioblastoma is characterized by a high frequency of CDKN2A/CCND2/CDK4/CDK6 pathway dysregulation, making dual inhibition of CDK4 and CDK6 an attractive therapeutic approach for this disease. Abemaciclib, ribociclib, and palbociclib are approved CDK4/6 inhibitors for the treatment of HR+/HER2- breast cancer, but these drugs are not expected to show strong activity in brain tumors due to poor blood brain barrier penetration. Herein, we report the identification of a brain-penetrant CDK4/6 inhibitor derived from a literature molecule with low molecular weight and topological polar surface area (MW = 285 and TPSA = 66 Å2), but lacking the CDK2/1 selectivity profile due to the absence of a basic amine. Removal of a hydrogen bond donor via cyclization of the pyrazole allowed for the introduction of basic and semi-basic amines, while maintaining in many cases efflux ratios reasonable for a CNS program. Ultimately, a basic spiroazetidine (cpKa = 8.8) was identified that afforded acceptable selectivity over anti-target CDK1 while maintaining brain-penetration in vivo (mouse Kp,uu = 0.20-0.59). To probe the potency and selectivity, our lead compound was evaluated in a panel of glioblastoma cell lines. Potency comparable to abemaciclib was observed in Rb-wild type lines U87MG, DBTRG-05MG, A172, and T98G, while Rb-deficient cell lines SF539 and M059J exhibited a lack of sensitivity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células MCF-7 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
15.
J Med Chem ; 62(13): 6223-6240, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31082230

RESUMO

A series of pyrazolopyrimidine inhibitors of IRAK4 were developed from a high-throughput screen (HTS). Modification of an HTS hit led to a series of bicyclic heterocycles with improved potency and kinase selectivity but lacking sufficient solubility to progress in vivo. Structure-based drug design, informed by cocrystal structures with the protein and small-molecule crystal structures, yielded a series of dihydrobenzofurans. This semisaturated bicycle provided superior druglike properties while maintaining excellent potency and selectivity. Improved physicochemical properties allowed for progression into in vivo experiments, where lead molecules exhibited low clearance and showed target-based inhibition of IRAK4 signaling in an inflammation-mediated PK/PD mouse model.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Aminoquinolinas/síntese química , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Benzofuranos/síntese química , Benzofuranos/metabolismo , Benzofuranos/farmacologia , Domínio Catalítico , Feminino , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Bioconjug Chem ; 30(5): 1356-1370, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30966735

RESUMO

This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species. Variation of both the payload mAb attachment site and length of the linker-drug is shown to alter the rates of adduct formation. Subsequent experiments demonstrated that adduct formation attenuates the in vitro antiproliferation activity of the affected seco-CBI-dimer TDCs, but does not significantly impact the in vivo efficacy of the conjugates. In vitro assays employing phosphatase-treated whole blood suggest that A1M adduct formation is likely to occur if the seco-CBI-dimer TDCs are administered to humans. Importantly, protein adduct formation leads to the underestimation of total antibody (Tab) concentrations using an ELISA assay but does not affect Tab values determined via an orthogonal LC-MS/MS method. Several recommendations regarding bioanalysis of future in vivo studies involving related seco-CBI-containing ADCs are provided based on these collective findings.


Assuntos
alfa-Globulinas/química , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dimerização , Haplorrinos , Humanos , Imunoconjugados/química , Camundongos , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nature ; 561(7722): 189-194, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209367

RESUMO

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Assuntos
Antibacterianos/classificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Biocatálise/efeitos dos fármacos , Produtos Biológicos/classificação , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , Lisina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Porinas , Ligação Proteica , Domínios Proteicos , Serina Endopeptidases , Especificidade por Substrato
18.
Mol Pharm ; 15(9): 3979-3996, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30040421

RESUMO

A number of cytotoxic pyrrolobenzodiazepine (PBD) monomers containing various disulfide-based prodrugs were evaluated for their ability to undergo activation (disulfide cleavage) in vitro in the presence of either glutathione (GSH) or cysteine (Cys). A good correlation was observed between in vitro GSH stability and in vitro cytotoxicity toward tumor cell lines. The prodrug-containing compounds were typically more potent against cells with relatively high intracellular GSH levels (e.g., KPL-4 cells). Several antibody-drug conjugates (ADCs) were subsequently constructed from PBD dimers that incorporated selected disulfide-based prodrugs. Such HER2 conjugates exhibited potent antiproliferation activity against KPL-4 cells in vitro in an antigen-dependent manner. However, the disulfide prodrugs contained in the majority of such entities were surprisingly unstable toward whole blood from various species. One HER2-targeting conjugate that contained a thiophenol-derived disulfide prodrug was an exception to this stability trend. It exhibited potent activity in a KPL-4 in vivo efficacy model that was approximately three-fold weaker than that displayed by the corresponding parent ADC. The same prodrug-containing conjugate demonstrated a three-fold improvement in mouse tolerability properties in vivo relative to the parent ADC, which did not contain the prodrug.


Assuntos
Benzodiazepinas/química , Dissulfetos/química , Imunoconjugados/química , Pró-Fármacos/química , Pirróis/química , Linhagem Celular Tumoral , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Imunoconjugados/metabolismo , Estrutura Molecular
19.
Chemistry ; 24(19): 4830-4834, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29493023

RESUMO

A novel strategy to attach indole-containing payloads to antibodies through a carbamate moiety and a self-immolating, disulfide-based linker is described. This new strategy was employed to connect a selective estrogen receptor down-regulator (SERD) to various antibodies in a site-selective manner. The resulting conjugates displayed potent, antigen-dependent down-regulation of estrogen receptor levels in MCF7-neo/HER2 and MCF7-hB7H4 cells. They also exhibited similar antigen-dependent modulation of the estrogen receptor in tumors when administered intravenously to mice bearing MCF7-neo/HER2 tumor xenografts. The indole-carbamate moiety present in the new linker was stable in whole blood from various species and also exhibited good in vivo stability properties in mice.


Assuntos
Indóis/química , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Humanos , Imunoconjugados/administração & dosagem , Células MCF-7 , Camundongos
20.
J Med Chem ; 61(3): 989-1000, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29227683

RESUMO

Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells. If the linker can be preferentially hydrolyzed by tumor-specific proteases, safety margin may improve. However, the use of peptide-based linkers limits our ability to modulate protease specificity. Here we report the structure-guided discovery of novel, nonpeptidic ADC linkers. We show that a cyclobutane-1,1-dicarboxamide-containing linker is hydrolyzed predominantly by cathepsin B while the valine-citrulline dipeptide linker is not. ADCs bearing the nonpeptidic linker are as efficacious and stable in vivo as those with the dipeptide linker. Our results strongly support the application of the peptidomimetic linker and present new opportunities for improving the selectivity of ADCs.


Assuntos
Catepsina B/metabolismo , Descoberta de Drogas , Imunoconjugados/química , Imunoconjugados/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Humanos , Espaço Intracelular/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...