Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(13): 9998-10007, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477497

RESUMO

Lithium-sulfur batteries (LSBs) have attracted attention due to their high theoretical energy density. This and various other advantages, such as the availability and non-toxicity of sulfur, raise interest in LSBs against the background of the energy revolution. However, a polysulfide shuttle mechanism can adversely affect the electrochemical performance of the cell. The sulfur redox properties are influenced, for example, by the electrolyte and the cathode material. Here, a computational study of the discharge process of an LSB with sulfurized poly(acrylonitrile) (SPAN) as the cathode material in combination with a carbonate electrolyte is presented. The nucleation of produced solid Li2S is compared to soluble Li2S. Dominating species are determined by comparing the Gibbs free energy of several species. We found that multiple lithiation steps occur before each Li2S detachment, preventing longer-chain polysulfide cleavage and a polysulfide shuttle. Through nucleating on the nitrogen-rich backbone of SPAN, Li2S units are stabilized by interactions with each other and with the nitrogen atoms. Experimental data show a potential drop and plateau during discharge, which is consistent with the calculated discharge profiles of SPAN with both soluble and nucleated Li2S, and hints at a direct solid-solid transition in the Li-SPAN cell during discharge when using carbonate-based electrolytes.

2.
J Chem Phys ; 155(20): 204106, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852483

RESUMO

A generalization of the hybrid scheme for multireference methods as recently put forward by Saitow and Yanai [J. Chem. Phys. 152, 114 111 (2020)] is presented. The hybrid methods are constructed by defining internal and external excitation spaces and evaluating these two subsets of excitations at different levels of theory. New hybrids that use the mix of internally contracted multireference coupled-cluster, unshifted multireference coupled electron pair, and multireference perturbation methods are derived and benchmarked. A new separation of the excitation space, which combines all singles and doubles excitations to the virtual orbitals into the external space, is also presented and tested. In general, the hybrid methods improve upon their non-hybrid parent method and offer a good compromise between computational complexity and numerical accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...