Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 157: 105188, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38677664

RESUMO

Emerging and re-emerging diseases in fish cause drastic economic losses in the aquaculture sector. To combat the impact of disease outbreaks and prevent the emergence of infections in culture systems, understanding the advanced strategies for protecting fish against infections is inevitable in fish health research. Therefore, the present study aimed to evaluate the induction of trained immunity and its protective efficacy against Streptococcus agalactiae in tilapia. For this, Nile tilapia and the Tilapia head kidney macrophage primary culture were primed using ß-glucan @200 µg/10 g body weight and 10 µg/mL respectively. Expression profiles of the markers of trained immunity and production of metabolites were monitored at different time points, post-priming and training, which depicted enhanced responsiveness. Higher lactate and lactate dehydrogenase (LDH) production in vitro suggests heightened glycolysis induced by priming of the cells using ß-glucan. A survival rate of 60% was observed in ß-glucan trained fish post challenge with virulent S. agalactiae at an LD50 of 2.6 × 107 cfu/ml, providing valuable insights into promising strategies of trained immunity for combating infections in fish.


Assuntos
Ciclídeos , Doenças dos Peixes , Macrófagos , Infecções Estreptocócicas , Streptococcus agalactiae , beta-Glucanas , Animais , beta-Glucanas/metabolismo , Streptococcus agalactiae/imunologia , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Macrófagos/imunologia , Células Cultivadas , Rim Cefálico/imunologia , Aquicultura , Imunidade Inata , Glicólise , L-Lactato Desidrogenase/metabolismo , Memória Imunológica , Imunidade Treinada
2.
Fish Shellfish Immunol ; 131: 855-861, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36336239

RESUMO

Trained immunity refers to the memory acquired by innate immune cells, leading to cross-protection and non-specific responses to subsequent infection, thereby improving host survival. Trained immunity induction is a combined effect of immune signaling, metabolic changes, and epigenetic modifications. The present study evaluated the induction of markers of the phenomenon of trained immunity in common carp, which is trained using ß-glucan. The mammalian target of rapamycin (mtor) and hypoxia-inducible factor (hif1α), the metabolic basis of trained immunity; the histone deacetylase (hdac7), one of the markers of epigenetic modifications, metabolic activity of activated cells and expression profiles of proinflammatory cytokines viz. il6a, tnfαa2, and ifnγ were targeted in the study and analyzed in vivo. Besides in vivo analysis, in vitro analysis of mtorc2, hif1α, hdac7, and ifnγ were analyzed. In vitro analyses were performed on head kidney macrophages isolated and maintained in L-15 media and double trained with ß-glucan at 100µg/mL. The culture supernatant was collected at different time intervals and processed for expression studies. Healthy common carp were injected with ß-glucan at 20 mg/kg body weight for training followed by a resting phase for 6 days and were restimulated with the same dose. Head kidney was collected from the fish post-induction as well as post-restimulation. The expression profile of mtorc2, hdac7, and hif1α were found elevated post-stimulation of ß-glucan. Further, a significantly upregulated expression profile of proinflammatory cytokines (ifnγ, il6a and tnfαa2) was observed. Increased glycolysis in the cells post-ß-glucan stimulation was confirmed by the high lactate and LDH production detected in the cell culture supernatant. Overall, the study revealed the expression profile of the trained immunity markers and the increased metabolic activity in cells induced with ß-glucan, which further validates that the action of trained immunity is indispensable in fish on encounter with a potential ligand. The study supports the existing reports on trained immunity in teleost fish with evidence at the genomic level. However, further studies are required to understand the responses and actions of trained immune cells during infection in detail.


Assuntos
Carpas , beta-Glucanas , Animais , Carpas/genética , Glucanos/farmacologia , Imunidade Treinada , beta-Glucanas/farmacologia , Citocinas/genética , Citocinas/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Imunidade Inata/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...