Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20910, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867886

RESUMO

This research intends to investigate the effect of the nonlinearity of the surface velocity on the hybrid nanofluid flow behavior. Here, the total composition of Al2O3 (alumina) as well as Cu (copper) volume fractions, are implemented in a one-to-one ratio and then dispersed in water. The similarity equations are gained employing a similarity transformation, which is programmed in MATLAB software. The dual solutions are attainable for certain ranges with respect to the mass flux parameter S and the power-law index n. Also, the turning point occurs in the region of S<0 and n>1. Besides, the rise of n led to reduce the skin friction as well as the heat transfer coefficients with 39.44 % and 11.71 % reduction, respectively. Moreover, 14.39 % reduction of the heat transfer rate is observed in the presence of viscous dissipation (Eckert number). It is found that only the first solution is stable as time progresses. Generally, this study gives scientists and engineers a starting point for predicting how to control the parameters to achieve the best results for relevant practical applications.

2.
Micromachines (Basel) ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37241605

RESUMO

Hybrid nanofluids may exhibit higher thermal conductivity, chemical stability, mechanical resistance and physical strength compared to regular nanofluids. Our aim in this study is to investigate the flow of a water-based alumina-copper hybrid nanofluid in an inclined cylinder with the impact of buoyancy force and a magnetic field. The governing partial differential equations (PDEs) are transformed into a set of similarity ordinary differential equations (ODEs) using a dimensionless set of variables, and then solved numerically using the bvp4c package from MATLAB software. Two solutions exist for both buoyancy opposing (λ < 0) and assisting (λ > 0) flows, whereas a unique solution is found when the buoyancy force is absent (λ = 0). In addition, the impacts of the dimensionless parameters, such as curvature parameter, volume fraction of nanoparticles, inclination angle, mixed convention parameter, and magnetic parameter are analyzed. The results of this study compare well with previously published results. Compared to pure base fluid and regular nanofluid, hybrid nanofluid reduces drag and transfers heat more efficiently.

3.
Micromachines (Basel) ; 14(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984971

RESUMO

This study aims to investigate the magnetohydrodynamic flow induced by a moving surface in a nanofluid and the occurrence of suction and solar radiation effects using the Buongiorno model. The numerical findings are obtained using MATLAB software. The effects of various governing parameters on the rates of heat and mass transfer along with the nanoparticles concentration and temperature profiles are elucidated graphically. Non-unique solutions are discovered for a specific variation of the shrinking strength. The temporal stability analysis shows that only one of them is stable as time passes. Furthermore, raising the Brownian motion parameter reduces both the local Sherwood number and the local Nusselt number for both solutions. It is also observed that increasing the thermophoresis parameter reduces the rate of heat transfer, whereas the opposite trend is observed for the rate of mass transfer.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432302

RESUMO

The mixed convection flow with thermal characteristics of a water-based Cu-Al2O3 hybrid nanofluid towards a vertical and permeable wedge was numerically and statistically analyzed in this study. The governing model was constructed using physical and theoretical assumptions, which were then reduced to a set of ordinary differential equations (ODEs) using similarity transformation. The steady flow solutions were computed using the Matlab software bvp4c. All possible solutions were presented in the graphs of skin friction coefficient and thermal rate. The numerical results show that the flow and thermal progresses are developed by enhancing the controlling parameters (wedge parameter, volumetric concentration of nanoparticles, and suction parameter). Moreover, the response surface methodology (RSM) with analysis of variance (ANOVA) was employed for the statistical evaluation and conducted using the fit general linear model in the Minitab software. From the standpoint of statistical analysis, the wedge parameter and volumetric nanoparticle concentration have a considerable impact on all responses; however, the suction parameter effect is only substantial for a single response.

5.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432385

RESUMO

The use of hybrid nanoparticles to increase heat transfer is a favorable area of research, and therefore, numerous scientists, researchers, and scholars have expressed their appreciation for and interest in this field. Determining the dynamic role of nanofluids in the cooling of microscopic electronic gadgets, such as microchips and related devices, is also one of the fundamental tasks. With such interesting and useful applications of hybrid nanofluids in mind, the main objective is to deal with the analysis of the unsteady flow towards a shrinking sheet in a water-based hybrid ferrite nanoparticle in porous media, with heat sink/source effects. Moreover, the impact of these parameters on heat and mass transfers is also reported. Numerical results are obtained using MATLAB software. Non-unique solutions are determined for a certain shrinking strength, in addition to the unsteadiness parameter. The mass transfer and friction factor increase for the first solution due to the hybrid nanoparticles, but the heat transfer rate shows the opposite effect.

6.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144989

RESUMO

This paper examines the unsteady separated stagnation point (USSP) flow and thermal progress of Fe3O4-CoFe2O4/H2O on a moving plate subject to the heat generation and MHD effects. The model of the flow includes the boundary layer and energy equations. These equations are then simplified with the aid of similarity variables. The numerical results are generated by the bvp4c function and then presented in graphs and tables. The magnetic and acceleration (strength of the stagnation point flow) parameters are the contributing factors in the augmentation of the skin friction and heat transfer coefficients. However, the enhancement of heat generation parameter up to 10% shows a reduction trend in the thermal rate distribution of Fe3O4-CoFe2O4/H2O. This finding reveals the effectiveness of heat absorption as compared to the heat generation in the thermal flow process. From the stability analysis, the first solution is the physical solution. The streamline for the first solution acts as a normal stagnation point flow, whereas the second solution splits into two regions, proving the occurrence of reverse flow.

7.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888926

RESUMO

The aluminum nanoparticle is adequate for power grid wiring, such as the distribution of local power and the transmission of aerial power lines, because of its higher conductivity. This nanoparticle is also one of the most commonly used materials in applications in the electrical field. Thus, in this study, a radiative axisymmetric flow of Casson fluid, induced by water-based Al2O3 nanofluid by using the Koo-Kleinstreuer-Li (KKL) correlation, is investigated. The impact of the magnetic field is also taken into account. KKL correlation is utilized to compute the thermal conductivity and effective viscosity. Analytical double solutions are presented for the considered axisymmetric flow model after implementing the similarity technique to transmute the leading equations into ordinary differential equations. The obtained analytic forms were used to examine and discuss the velocity profile, the temperature distribution, reduced heat transfer, and coefficient of reduced skin friction. The analytic solutions indicate that the velocity profile decreases in the branch of the first solution and uplifts in the branch of the second solution due to the presence of an aluminum particle, whereas the dimensionless temperature enhances in both solutions. In addition, the Casson parameter increases the friction factor, as well as the heat transport rate.

8.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269275

RESUMO

The hybrid nanofluid has sparked new significance in the industrial and engineering sectors because of their applications like water heating in solar and analysis of heat exchanger surfaces. As a result, the current study emphasizes the analysis of heat transfer and Agrawal axisymmetric flow towards a rotational stagnation point incorporated via hybrid nanofluids imposing on a radially permeable shrinking/stretching rotating disk. The leading partial differential equations are refined into ordinary differential equations by using appropriate similarity variables. The bvp4c solver in MATLAB is then employed to solve the simplified system numerically. The current numerical procedure is adequate of generating double solutions when excellent initial guesses are implemented. The results show that the features of fluid flow along with heat transfer rate induced by hybrid nanofluid are significantly influenced. The Nusselt number and the tendency of the wall drag force can be improved as the concentration of nanoparticles and the suction factor are increased. Moreover, the results of the model have been discussed in detail for both solution branches due to the cases of rotating disk parameter as well as non-rotating disk parameter. Therefore, an extraordinary behavior is observed for the branch of lower solutions in the case of rotating disk parameter. In addition, the shear stress in the radial direction upsurges for the first solution but declines for the second solution with higher values of suction. Moreover, the rotating parameter slows down the separation of the boundary layer.

9.
Nanomaterials (Basel) ; 12(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055293

RESUMO

Colloidal suspensions of regular fluids and nanoparticles are known as nanofluids. They have a variety of applications in the medical field, including cell separation, drug targeting, destruction of tumor tissue, and so on. On the other hand, the dispersion of multiple nanoparticles into a regular fluid is referred to as a hybrid nanofluid. It has a variety of innovative applications such as microfluidics, heat dissipation, dynamic sealing, damping, and so on. Because of these numerous applications of nanofluids in minds, therefore, the objective of the current exploration divulged the axisymmetric radiative flow and heat transfer induced by hybrid nanofluid impinging on a porous stretchable/shrinkable rotating disc. In addition, the impact of Smoluchowski temperature and Maxwell velocity slip boundary conditions are also invoked. The hybrid nanofluid was formed by mixing the copper (Cu) and alumina (Al2O3) nanoparticles scattered in the regular (viscous) base fluid (H2O). Similarity variables are used to procure the similarity equations, and the numerical outcomes are achieved using bvp4c in MATLAB software. According to the findings, double solutions are feasible for stretching (λ>0) and shrinking cases (λ<0). The heat transfer rate is accelerated as the hybrid nanoparticles increases. The suction parameter enhances the friction factors as well as heat transfer rate. Moreover, the friction factor in the radial direction and heat transfer enrich for the first solution and moderate for the second outcome due to the augmentation δ1, while the trend of the friction factor in the radial direction is changed only in the case of stretching for both branches.

10.
Sci Rep ; 11(1): 14128, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238991

RESUMO

The proficiency of hybrid nanofluid from Cu-Al2O3/water formation as the heat transfer coolant is numerically analyzed using the powerful and user-friendly interface bvp4c in the Matlab software. For that purpose, the Cu-Al2O3/water nanofluid flow between two parallel plates is examined where the lower plate can be deformed while the upper plate moves towards/away from the lower plate. Other considerable factors are the wall mass suction/injection and the magnetic field that applied on the lower plate. The reduced ordinary (similarity) differential equations are solved using the bvp4c application. The validation of this novel model is conducted by comparing a few of numerical values for the reduced case of viscous fluid. The results imply the potency of this heat transfer fluid which can enhance the heat transfer performance for both upper and lower plates approximately by 7.10% and 4.11%, respectively. An increase of squeezing parameter deteriorates the heat transfer coefficient by 4.28% (upper) and 5.35% (lower), accordingly. The rise of suction strength inflates the heat transfer at the lower plate while the presence of the magnetic field shows a reverse result.

11.
Sci Rep ; 10(1): 9296, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518305

RESUMO

This paper examines the stagnation point flow towards a stretching/shrinking cylinder in a hybrid nanofluid. Here, copper (Cu) and alumina (Al2O3) are considered as the hybrid nanoparticles while water as the base fluid. The governing equations are reduced to the similarity equations using a similarity transformation. The resulting equations are solved numerically using the boundary value problem solver, bvp4c, available in the Matlab software. It is found that the heat transfer rate is greater for the hybrid nanofluid compared to the regular nanofluid as well as the regular fluid. Besides, the non-uniqueness of the solutions is observed for certain physical parameters. It is also noticed that the bifurcation of the solutions occurs in the shrinking regions. In addition, the heat transfer rate and the skin friction coefficients increase in the presence of nanoparticles and for larger Reynolds number. It is found that between the two solutions, only one of them is stable as time evolves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...