Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Biol Med Model ; 12: 9, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26014131

RESUMO

BACKGROUND: Despite a vast literature, atherosclerosis and the associated ischemia/reperfusion injuries remain today in many ways a mystery. Why do atheromatous plaques make and store a supply of cholesterol and sulfate within the major arteries supplying the heart? Why are treatment programs aimed to suppress certain myocardial infarction risk factors, such as elevated serum homocysteine and inflammation, generally counterproductive? METHODS: Our methods are based on an extensive search of the literature in atherosclerotic cardiovascular disease as well as in the area of the unique properties of water, the role of biosulfates in the vascular wall, and the role of electromagnetic fields in vascular flow. Our investigation reveals a novel pathology linked to atherosclerosis that better explains the observed facts than the currently held popular view. RESULTS: We propose a novel theory that atherosclerosis can best be explained as being due to cholesterol sulfate deficiency. Furthermore, atheromatous plaques replenish the supply of cholesterol and sulfate to the microvasculature, by exploiting the inflammatory agent superoxide to derive sulfate from homocysteine and other sulfur sources. We argue that the sulfate anions attached to the glycosaminoglycans in the glycocalyx are essential in maintaining the structured water that is crucial for vascular endothelial health and erythrocyte mobility through capillaries. Sulfate depletion leads to cholesterol accumulation in atheromas, because its transport through water-based media depends on sulfurylation. We show that streaming potential induces nitric oxide (NO) release, and NO derivatives break down the extracellular matrix, redistributing sulfate to the microvasculature. We argue that low (less negative) zeta potential due to insufficient sulfate anions leads to hypertension and thrombosis, because these responses can increase streaming potential and induce nitric-oxide mediated vascular relaxation, promoting oxygen delivery. Our hypothesis is a parsimonious explanation of multiple features of atherosclerotic cardiovascular disease. CONCLUSIONS: If our interpretation is correct, then it would have a significant impact on how atherosclerosis is treated. We recommend a high intake of sulfur-containing foods as well as an avoidance of exposure to toxicants that may impair sulfate synthesis.


Assuntos
Aterosclerose/metabolismo , Ésteres do Colesterol/metabolismo , Modelos Biológicos , Circulação Sanguínea , Matriz Extracelular/metabolismo , Glutationa/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Inflamação/patologia , Síndrome , gama-Glutamiltransferase/metabolismo
2.
Eur J Intern Med ; 22(2): 134-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21402242

RESUMO

Alzheimer's disease is a devastating disease whose recent increase in incidence rates has broad implications for rising health care costs. Huge amounts of research money are currently being invested in seeking the underlying cause, with corresponding progress in understanding the disease progression. In this paper, we highlight how an excess of dietary carbohydrates, particularly fructose, alongside a relative deficiency in dietary fats and cholesterol, may lead to the development of Alzheimer's disease. A first step in the pathophysiology of the disease is represented by advanced glycation end-products in crucial plasma proteins concerned with fat, cholesterol, and oxygen transport. This leads to cholesterol deficiency in neurons, which significantly impairs their ability to function. Over time, a cascade response leads to impaired glutamate signaling, increased oxidative damage, mitochondrial and lysosomal dysfunction, increased risk to microbial infection, and, ultimately, apoptosis. Other neurodegenerative diseases share many properties with Alzheimer's disease, and may also be due in large part to this same underlying cause.


Assuntos
Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/efeitos adversos , Doença de Alzheimer/etiologia , Transporte Biológico , Proteínas Sanguíneas/metabolismo , Colesterol/deficiência , Colesterol/metabolismo , Colesterol na Dieta/administração & dosagem , Deficiências Nutricionais/complicações , Gorduras na Dieta/administração & dosagem , Relação Dose-Resposta a Droga , Gorduras/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Neurônios/metabolismo , Oxigênio/metabolismo
3.
Arch Med Sci ; 7(1): 8-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22291727

RESUMO

The metabolic syndrome (MetS) is manifested by a lipid triad which includes elevated serum triglycerides, small LDL particles, and low high-density lipoprotein (HDL) cholesterol, by central obesity (central adiposity), insulin resistance, glucose intolerance and elevated blood pressure, and it is associated with an increased risk of type 2 diabetes and coronary heart disease. We have developed a new hypothesis regarding MetS as a consequence of a high intake in carbohydrates and food with a high glycemic index, particularly fructose, and relatively low intake of cholesterol and saturated fat. We support our arguments through animal studies which have shown that exposure of the liver to increased quantities of fructose leads to rapid stimulation of lipogenesis and accumulation of triglycerides. The adipocytes store triglycerides in lipid droplets, leading to adipocyte hypertrophy. Adipocyte hypertrophy is associated with macrophage accumulation in adipose tissue. An important modulator of obesity-associated macrophage responses in white adipose tissue is the death of adipocytes. Excess exposure to fructose intake determines the liver to metabolize high doses of fructose, producing increased levels of fructose end products, like glyceraldehyde and dihydroxyacetone phosphate, that can converge with the glycolytic pathway. Fructose also leads to increased levels of advanced glycation end products. The macrophages exposed to advanced glycation end products become dysfunctional and, on entry into the artery wall, contribute to plaque formation and thrombosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...