Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hemasphere ; 5(9): e630, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34396051

RESUMO

BCR-ABL negative myeloproliferative neoplasms (MPNs) consist of essential thrombocythemia, polycythemia vera, and myelofibrosis. The majority of patients harbor the JAK2-activating mutation V617F. JAK2 inhibitors were shown to reduce symptom burden and splenomegaly in MPN patients. However, treatment options are limited after failure of JAK2 inhibitors. AXL, a member of the TAM family of receptor tyrosine kinases, mediates survival and therapy resistance of different myeloid cancers including acute myeloid leukemia and chronic myeloid leukemia. We studied the relevance of AXL as a target in MPN using primary patient cells and preclinical disease models. We found that AXL is abundantly activated in MPN cells and that its ligand growth arrest-specific gene 6 is upregulated in MPN patients. Pharmacologic and genetic blockade of AXL impaired viability, decreased proliferation and increased apoptosis of MPN cells. Interestingly, ruxolitinib treatment induced increased phosphorylation of AXL indicating that activation of AXL might mediate resistance to ruxolitinib. Consistently, the AXL inhibitor bemcentinib exerted additive effects with ruxolitinib via impaired STAT3, STAT5, and AKT signaling. Both agents had activity when employed alone and exerted an additive effect on survival and splenomegaly in vivo. Moreover, bemcentinib treatment normalized red blood cell count and hemoglobin levels in vivo. Thus, our data indicate that AXL inhibition represents a novel treatment option in MPN warranting clinical investigation.

3.
Oncotarget ; 6(8): 6341-58, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25849942

RESUMO

Anti-angiogenic therapies were approved for different cancers. However, significant primary and secondary resistance hampers efficacy in several tumor types including breast cancer. Thus, we need to develop clinically applicable strategies to enhance efficacy of anti-angiogenic drugs.We report that anti-angiogenic therapies can induce upregulation of cyclooxygenase-2 (Cox-2) and of its product prostaglandin E2 (PGE2) in breast cancer models. Upon Cox-2 inhibition PGE2 levels were normalized and efficacy of anti-vascular endothelial growth factor receptor 2 (anti-VEGFR-2) antibodies and sunitinib was enhanced. Interestingly, both treatments exerted additive anti-angiogenic effects. Following Cox-2 inhibition, we observed reduced infiltration of tumors with cancer-associated fibroblasts (CAFs) and lower levels of pro-angiogenic factors active besides the VEGF axis including hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2). Mechanistic studies indicated that Cox-2 inhibition reduced PGE2-induced migration and proliferation of CAFs via inhibiting phosphorylation of Akt.Hence, Cox-2 inhibition can increase efficacy of anti-angiogenic treatments and our findings might pave the road for clinical investigations of concomitant blockade of Cox-2 and VEGF-signaling.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Distribuição Aleatória , Transdução de Sinais
4.
Blood ; 125(5): 820-30, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25428221

RESUMO

Patients with t(1;19)-positive acute lymphoblastic leukemia (ALL) are prone to central nervous system (CNS) relapses, and expression of the TAM (Tyro3, Axl, and Mer) receptor Mer is upregulated in these leukemias. We examined the functional role of Mer in the CNS in preclinical models and performed correlative studies in 64 t(1;19)-positive and 93 control pediatric ALL patients. ALL cells were analyzed in coculture with human glioma cells and normal rat astrocytes: CNS coculture caused quiescence and protection from methotrexate toxicity in Mer(high) ALL cell lines, which was antagonized by short hairpin RNA-mediated knockdown of Mer. Mer expression was upregulated, prosurvival Akt and mitogen-activated protein kinase signaling were activated, and secretion of the Mer ligand Galectin-3 was stimulated. Mer(high) t(1;19) primary cells caused CNS involvement to a larger extent in murine xenografts than in their Mer(low) counterparts. Leukemic cells from Mer(high) xenografts showed enhanced survival in coculture. Treatment of Mer(high) patient cells with the Mer-specific inhibitor UNC-569 in vivo delayed leukemia onset, reduced CNS infiltration, and prolonged survival of mice. Finally, a correlation between high Mer expression and CNS positivity upon initial diagnosis was observed in t(1;19) patients. Our data provide evidence that Mer is associated with survival in the CNS in t(1;19)-positive ALL, suggesting a role as a diagnostic marker and therapeutic target.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas Sanguíneas , Estudos de Casos e Controles , Sobrevivência Celular , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Criança , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Técnicas de Cocultura , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Metotrexato/farmacologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Translocação Genética , Células Tumorais Cultivadas , c-Mer Tirosina Quinase
5.
Blood ; 122(14): 2443-52, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23982172

RESUMO

Acute myeloid leukemia (AML) represents a clonal disease of hematopoietic progenitors characterized by acquired heterogenous genetic changes that alter normal mechanisms of proliferation, self-renewal, and differentiation.(1) Although 40% to 45% of patients younger than 65 years of age can be cured with current therapies, only 10% of older patients reach long-term survival.(1) Because only very few novel AML drugs were approved in the past 2 decades, there is an urgent need to identify novel targets and therapeutic strategies to treat underserved AML patients. We report here that Axl, a member of the Tyro3, Axl, Mer receptor tyrosine kinase family,(2-4) represents an independent prognostic marker and therapeutic target in AML. AML cells induce expression and secretion of the Axl ligand growth arrest-specific gene 6 (Gas6) by bone marrow-derived stromal cells (BMDSCs). Gas6 in turn mediates proliferation, survival, and chemoresistance of Axl-expressing AML cells. This Gas6-Axl paracrine axis between AML cells and BMDSCs establishes a chemoprotective tumor cell niche that can be abrogated by Axl-targeting approaches. Axl inhibition is active in FLT3-mutated and FLT3 wild-type AML, improves clinically relevant end points, and its efficacy depends on presence of Gas6 and Axl. Axl inhibition alone or in combination with chemotherapy might represent a novel therapeutic avenue for AML.


Assuntos
Células da Medula Óssea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Comunicação Parácrina/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/farmacocinética , Western Blotting , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...