Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928694

RESUMO

OBJECTIVE: This study aimed to assess the impact of artificial intelligence (AI)-driven noise reduction algorithms on metal artifacts and image quality parameters in cone-beam computed tomography (CBCT) images of the oral cavity. MATERIALS AND METHODS: This retrospective study included 70 patients, 61 of whom were analyzed after excluding those with severe motion artifacts. CBCT scans, performed using a Hyperion X9 PRO 13 × 10 CBCT machine, included images with dental implants, amalgam fillings, orthodontic appliances, root canal fillings, and crowns. Images were processed with the ClariCT.AI deep learning model (DLM) for noise reduction. Objective image quality was assessed using metrics such as the differentiation between voxel values (ΔVVs), the artifact index (AIx), and the contrast-to-noise ratio (CNR). Subjective assessments were performed by two experienced readers, who rated overall image quality and artifact intensity on predefined scales. RESULTS: Compared with native images, DLM reconstructions significantly reduced the AIx and increased the CNR (p < 0.001), indicating improved image clarity and artifact reduction. Subjective assessments also favored DLM images, with higher ratings for overall image quality and lower artifact intensity (p < 0.001). However, the ΔVV values were similar between the native and DLM images, indicating that while the DLM reduced noise, it maintained the overall density distribution. Orthodontic appliances produced the most pronounced artifacts, while implants generated the least. CONCLUSIONS: AI-based noise reduction using ClariCT.AI significantly enhances CBCT image quality by reducing noise and metal artifacts, thereby improving diagnostic accuracy and treatment planning. Further research with larger, multicenter cohorts is recommended to validate these findings.

2.
J Clin Med ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38929931

RESUMO

Background/Objectives: The purpose of this preliminary study was to evaluate the diagnostic performance of an AI-driven platform, Diagnocat (Diagnocat Ltd., San Francisco, CA, USA), for assessing endodontic treatment outcomes using panoramic radiographs (PANs). Materials and Methods: The study included 55 PAN images of 55 patients (15 males and 40 females, aged 12-70) who underwent imaging at a private dental center. All images were acquired using a Hyperion X9 PRO digital cephalometer and were evaluated using Diagnocat, a cloud-based AI platform. The AI system assessed the following endodontic treatment features: filling probability, obturation adequacy, density, overfilling, voids in filling, and short filling. Two human observers independently evaluated the images, and their consensus served as the reference standard. The diagnostic accuracy metrics were calculated. Results: The AI system demonstrated high accuracy (90.72%) and a strong F1 score (95.12%) in detecting the probability of endodontic filling. However, the system showed variable performance in other categories, with lower accuracy metrics and unacceptable F1 scores for short filling and voids in filling assessments (8.33% and 14.29%, respectively). The accuracy for detecting adequate obturation and density was 55.81% and 62.79%, respectively. Conclusions: The AI-based system showed very high accuracy in identifying endodontically treated teeth but exhibited variable diagnostic accuracy for other qualitative features of endodontic treatment.

3.
J Clin Med ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731237

RESUMO

Background/Objectives: Periapical lesions (PLs) are frequently detected in dental radiology. Accurate diagnosis of these lesions is essential for proper treatment planning. Imaging techniques such as orthopantomogram (OPG) and cone-beam CT (CBCT) imaging are used to identify PLs. The aim of this study was to assess the diagnostic accuracy of artificial intelligence (AI) software Diagnocat for PL detection in OPG and CBCT images. Methods: The study included 49 patients, totaling 1223 teeth. Both OPG and CBCT images were analyzed by AI software and by three experienced clinicians. All the images were obtained in one patient cohort, and findings were compared to the consensus of human readers using CBCT. The AI's diagnostic accuracy was compared to a reference method, calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score. Results: The AI's sensitivity for OPG images was 33.33% with an F1 score of 32.73%. For CBCT images, the AI's sensitivity was 77.78% with an F1 score of 84.00%. The AI's specificity was over 98% for both OPG and CBCT images. Conclusions: The AI demonstrated high sensitivity and high specificity in detecting PLs in CBCT images but lower sensitivity in OPG images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...