Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777947

RESUMO

Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.

2.
Front Physiol ; 14: 1137058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089425

RESUMO

Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.

3.
Front Physiol ; 12: 681632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276401

RESUMO

Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.

5.
Adv Exp Med Biol ; 1190: 281-297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31760651

RESUMO

Gliomas are a heterogeneous group of tumors with evolving classification based on genotype. Isocitrate dehydrogenase (IDH) mutation is an early event in the formation of some diffuse gliomas, and is the best understood mechanism of their epigenetic dysregulation. Glioblastoma may evolve from lower-grade lesions with IDH mutations, or arise independently from copy number changes in platelet-derived growth factor receptor alpha (PDGFRA) and phosphatase and tensin homolog (PTEN). Several molecular subtypes of glioblastoma arise from a common proneural precursor with a tendency toward transition to a mesenchymal subtype. Following oncogenic transformation, gliomas escape growth arrest through a distinct step of aberrant telomere reverse transcriptase (TERT) expression, or mutations in either alpha thalassemia/mental retardation syndrome (ATRX) or death-domain associated protein (DAXX) genes. Metabolic reprogramming allows gliomas to thrive in harsh microenvironments such as hypoxia, acidity, and nutrient depletion, which contribute to tumor initiation, maintenance, and treatment resistance.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glioma/patologia , Reprogramação Celular , Humanos , Isocitrato Desidrogenase/genética , Mutação , PTEN Fosfo-Hidrolase/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Telomerase/genética , Microambiente Tumoral , Proteína Nuclear Ligada ao X/genética
6.
Neoplasia ; 21(1): 52-60, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504064

RESUMO

KIAA1549-BRAF is the most frequently identified genetic mutation in sporadic pilocytic astrocytoma (PA), creating a fusion BRAF (f-BRAF) protein with increased BRAF activity. Fusion-BRAF-expressing neural stem cells (NSCs) exhibit increased cell growth and can generate glioma-like lesions following injection into the cerebella of naïve mice. Increased Iba1+ monocyte (microglia) infiltration is associated with murine f-BRAF-expressing NSC-induced glioma-like lesion formation, suggesting that f-BRAF-expressing NSCs attract microglia to establish a microenvironment supportive of tumorigenesis. Herein, we identify Ccl2 as the chemokine produced by f-BRAF-expressing NSCs, which is critical for creating a permissive stroma for gliomagenesis. In addition, f-BRAF regulation of Ccl2 production operates in an ERK- and NFκB-dependent manner in cerebellar NSCs. Finally, Ccr2-mediated microglia recruitment is required for glioma-like lesion formation in vivo, as tumor do not form in Ccr2-deficient mice following f-BRAF-expressing NSC injection. Collectively, these results demonstrate that f-BRAF expression creates a supportive tumor microenvironment through NFκB-mediated Ccl2 production and microglia recruitment.


Assuntos
Quimiocina CCL2/biossíntese , Expressão Gênica , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/genética , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias/patologia
7.
Theriogenology ; 107: 115-126, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29145065

RESUMO

The placenta is a complex and essential organ composed largely of fetal-derived cells, including several different trophoblast subtypes that work in unison to support nutrient transport to the fetus during pregnancy. Abnormal placental development can lead to pregnancy-associated disorders that often involve metabolic dysfunction. The scope of dysregulated metabolism during placental development may not be fully representative of the in vivo state in defined culture systems, such as cell lines or isolated primary cells. Thus, assessing metabolic function in intact placental tissue would provide a better assessment of placental metabolism. In this study, we describe a methodology for assaying glycolytic function in structurally-intact mouse placental tissue, ex vivo, without culturing or tissue dissociation, that more closely resembles the in vivo state. Additionally, we present data highlighting sex-dependent differences of two mouse strains (C57BL/6 and ICR) in the pre-hypertrophic (E14.5) and hypertrophic (E18.5) placenta. These data establish a foundation for investigation of metabolism throughout gestation and provides a comprehensive assessment of glycolytic function during placental development.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , Placenta/fisiologia , Animais , Feminino , Desenvolvimento Fetal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Gravidez
8.
Stem Cells Dev ; 26(11): 808-817, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335680

RESUMO

Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Vilosidades Coriônicas/metabolismo , Metabolismo Energético , Técnicas de Silenciamento de Genes , Células-Tronco/citologia , Células-Tronco/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Respiração Celular , Forma Celular , Tamanho Celular , Feminino , Glicólise , Camundongos , Mitocôndrias/metabolismo , Tamanho das Organelas , Gravidez , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...