Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 329: 116983, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565500

RESUMO

Radioactive cesium-rich microparticles (CsMPs) derived from the Fukushima Daiichi Nnuclear Power Plant accident were detected from soils and river water around Fukushima Prefecture, Japan. Because CsMPs are insoluble and rich in radioactive cesium (RCs), they may cause the overestimation of solid-water distribution coefficient (Kd) for RCs in the water. Previous studies showed the proportion of RCs derived from CsMPs on RCs concentration in soils collected from areas with different contaminated levels. Because the proportion of RCs concentration derived CsMPs to the RCs concentration of soils in the less contaminated areas is higher than that in the highly contaminated areas, the effect of CsMPs on particulate RCs concentration in river water may be larger in the less contaminated areas. However, the difference in the effects of CsMPs on the particulate RCs concentration and Kd in river water flowing through watersheds with different contaminated levels has not been clarified. In this study, we investigated the effect of CsMPs on the particulate RCs concentration and Kd in two rivers, Takase River and Kami-Oguni River, flowing through the watersheds with different RCs contaminated levels in Fukushima Prefecture. CsMPs might enter rivers due to soil erosion because they were detected only in some samples collected from both rivers during flood events. CsMPs accounted for more than half of particulate RCs concentration in some water samples collected in the flood condition. In particular, the proportion of CsMPs in particulate RCs for the Kami-Oguni River was greater than that for the Takase River. However, when evaluating for the entire water sampling in the flood condition, a proportion of RCs concentration derived from CsMPs in the average RCs concentrations per unit mass of SS in both river waters collected in the flood condition was not large. CsMPs might temporarily increase the particulate RCs concentration and Kd in the flood event, but CsMPs did not significantly affect them when evaluated throughout the event.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Rios , Poluentes Radioativos da Água/análise , Césio , Água , Poeira , Japão , Centrais Nucleares , Solo
2.
Radiat Prot Dosimetry ; 198(13-15): 1052-1057, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083755

RESUMO

Cesium-rich microparticles (CsMPs) with high cesium-137 (137Cs) concentrations were released and deposited in surface soil after the Fukushima Daiichi Nuclear Power Plant accident. Radioactive materials on the soil surface layer enter rivers owing to soil erosion during rainfall. In this study, we investigated CsMPs runoff through the river via soil erosion during rainfall in the Takase River watershed in Namie Town, Fukushima Prefecture, Japan. CsMPs were rarely detected in suspended solids (SS) in water samples collected during four rainfalls between February and July 2021. Furthermore, the proportion of 137Cs concentration derived from CsMPs to 137Cs concentration in the form of SS (particulate 137Cs) in the water was ~6% on average, which suggests that 137Cs runoff in the form of CsMPs from the forest to the Takase River was not large.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Césio , Radioisótopos de Césio/análise , Japão , Solo , Água , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...