Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(6): 2678-2686, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38226527

RESUMO

The formose reaction is a unique chemical reaction for the preparation of saccharides from formaldehyde, a single carbon compound. We applied zeolite materials as heterogeneous catalysts to the formose reaction. The simple addition of Linde type A zeolite containing calcium ions (Ca-LTA) to an aqueous solution of formaldehyde and glycolaldehyde produced saccharides at room temperature. A quantitative analysis performed by high-performance liquid chromatography revealed that triose, tetrose, pentose, and hexose saccharides were produced with few byproducts. Ca-LTA was recovered from the reaction mixture by filtration, and the retrieved zeolite was found to be reusable under the same conditions. The catalytic activity of Ca-LTA was higher than those of conventional calcium catalysts and other solid materials such as silica, alumina, and hydroxyapatite. Several other types of zeolites with different crystal structures and alkali/alkali-earth metal ions also showed catalytic activity for saccharide formation. Based on the analytical results obtained by infrared spectroscopy, temperature-programmed desorption profiles and NMR measurements, we propose a reaction mechanism in which C-C bond formation is promoted by the mild basicity of the oxygen atoms and acidity on the metal ions of the aluminosilicate on the zeolite surfaces with low SiO2/Al2O3 ratios.

2.
Chem Sci ; 14(46): 13475-13484, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033894

RESUMO

Autocatalytic mechanisms in carbon metabolism, such as the Calvin cycle, are responsible for the biological assimilation of CO2 to form organic compounds with complex structures, including sugars. Compounds that form C-C bonds with CO2 are regenerated in these autocatalytic reaction cycles, and the products are concurrently released. The formose reaction in basic aqueous solution has attracted attention as a nonbiological reaction involving an autocatalytic reaction cycle that non-enzymatically synthesizes sugars from the C1 compound formaldehyde. However, formaldehyde and sugars, which are the substrate and products of the formose reaction, respectively, are consumed in Cannizzaro reactions, particularly under basic aqueous conditions, which makes the formose reaction a fragile sugar-production system. Here, we constructed an autocatalytic reaction cycle for sugar synthesis under neutral conditions. We focused on the weak Brønsted basicity of oxometalate anions such as tungstates and molybdates as catalysts, thereby enabling the aldol reaction, retro-aldol reaction, and aldose-ketose transformation, which collectively constitute the autocatalytic reaction cycle. These bases acted on sugar molecules of substrates together with sodium ions of a Lewis acid to promote deprotonation under neutral conditions, which is the initiation step of the reactions forming an autocatalytic cycle, whereas the Cannizzaro reaction was inhibited. The autocatalytic reaction cycle established using this abiotic approach is a robust sugar production system. Furthermore, we found that the synthesized sugars work as energy storage substances that sustain microbial growth despite their absence in nature.

3.
ACS Med Chem Lett ; 12(2): 211-216, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33603967

RESUMO

A structure-activity relationship study unexpectedly showed that carbonothioates 4a and 4b, obtained by a unique alkaline hydrolysis of 2-alkylthio-oxazolines 3a and 3b, respectively, are a novel scaffold for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Derivatization of the carbonothioates enhanced inhibitory activity against IDO1 and cellular kynurenine production without cytotoxicity and led to the discovery of the related scaffolds carbonodithioates 5 and cyanocarbonimidodithioates 6 as IDO1 inhibitors. Incorporation of an OH group provided the most potent analogue 5i. UV-visible absorption spectroscopy of the Soret band, as well as docking and peptide mapping studies, suggested that these molecules bind to the heme in the active site of IDO1. Our unique IDO1 inhibitors are potential leads for future development.

4.
RSC Adv ; 10(24): 13960-13967, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498487

RESUMO

A periodic mesoporous organosilica (PMO) containing 2,2'-bipyridine groups (BPy-PMO) has been shown to possess a unique pore wall structure in which the 2,2'-bipyridine groups are densely and regularly packed. The surface 2,2'-bipyridine groups can function as chelating ligands for the formation of metal complexes, thus generating molecularly-defined catalytic sites that are exposed on the surface of the material. We here report the construction of a heterogeneous water oxidation photocatalyst by immobilizing several types of tris(2,2'-bipyridine)ruthenium complexes on BPy-PMO where they function as photosensitizers in conjunction with iridium oxide as a catalyst. The Ru complexes produced on BPy-PMO in this work were composed of three bipyridine ligands, including the BPy in the PMO framework and two X2bpy, denoted herein as Ru(X)-BPy-PMO where X is H (2,2'-bipyridine), Me (4,4'-dimethyl-2,2'-bipyridine), t-Bu(4,4'-di-tert-butyl-2,2'-bipyridine) or CO2Me (4,4'-dimethoxycarbonyl-2,2'-bipyridine). Efficient photocatalytic water oxidation was achieved by tuning the photochemical properties of the Ru complexes on the BPy-PMO through the incorporation of electron-donating or electron-withdrawing functionalities. The reaction turnover number based on the amount of the Ru complex was improved to 20, which is higher than values previously obtained from PMO systems acting as water oxidation photocatalysts.

5.
Angew Chem Int Ed Engl ; 58(27): 9150-9154, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31025503

RESUMO

The combined use of a metal-complex catalyst and an enzyme is attractive, but typically results in mutual inactivation. A rhodium (Rh) complex immobilized in a bipyridine-based periodic mesoporous organosilica (BPy-PMO) shows high catalytic activity during transfer hydrogenation, even in the presence of bovine serum albumin (BSA), while a homogeneous Rh complex exhibits reduced activity due to direct interaction with BSA. The use of a smaller protein or an amino acid revealed a clear size-sieving effect of the BPy-PMO that protected the Rh catalyst from direct interactions. A combination of Rh-immobilized BPy-PMO and an enzyme (horse liver alcohol dehydrogenase; HLADH) promoted sequential reactions involving the transfer hydrogenation of NAD+ to give NADH followed by the asymmetric hydrogenation of 4-phenyl-2-butanone with high enantioselectivity. The use of BPy-PMO as a support for metal complexes could be applied to other systems consisting of a metal-complex catalyst and an enzyme.


Assuntos
Álcool Desidrogenase/metabolismo , Ródio/química , Dióxido de Silício/química , 2,2'-Dipiridil/química , Animais , Bovinos , Complexos de Coordenação/química , Cicloexanonas/química , Cicloexanonas/metabolismo , Cavalos , Hidrogenação , Fígado/enzimologia , NAD/química , NAD/metabolismo , Porosidade , Soroalbumina Bovina/química
6.
Bioorg Med Chem Lett ; 28(17): 2846-2849, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30055888

RESUMO

Kynurenine is biosynthesised from tryptophan catalysed by indoleamine 2,3-dioxygenase (IDO). The abrogation of kynurenine production is considered a promising therapeutic target for immunological cancer treatment. In the course of our IDO inhibitor programme, formal cyclisation of the isothiourea moiety of the IDO inhibitor 1 afforded the 5-Cl-benzimidazole derivative 2b-6, which inhibited both recombinant human IDO (rhIDO) activity and cellular kynurenine production. Further derivatisation of 2b-6 provided the potent inhibitor of cellular kynurenine production 2i (IC50 = 0.34 µM), which unexpectedly exerted little effect on the enzymatic activity of rhIDO. Elucidation of the mechanism of action revealed that compound 2i suppresses IDO expression at the protein level by inhibiting STAT1 expression in IFN-γ-treated A431 cells. The kynurenine-production inhibitor 2i is expected to be a promising starting point for a novel approach to immunological cancer treatment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/antagonistas & inibidores , Tioureia/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Cinurenina/biossíntese , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Tioureia/análogos & derivados , Tioureia/química
7.
Chemistry ; 24(15): 3846-3853, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29333628

RESUMO

This paper describes the physicochemical properties of a rhenium (Re) complex [Re(bpy)(CO)3 Cl] immobilized on a bipyridine-periodic mesoporous organosilica (BPy-PMO) acting as a solid support. The immobilized Re complex generated a metal-to-ligand charge transfer absorption band at 400 nm. This wavelength is longer than that exhibited by Re(bpy)(CO)3 Cl in the polar solvent acetonitrile (371 nm) and is almost equal to that in nonpolar toluene (403 nm). The photocatalytic activity of this heterogeneous Re complex was lower than that of a homogeneous Re complex due to the reduced phosphorescence lifetime resulting from immobilization. However, the catalytic activity was enhanced by the co-immobilization of the ruthenium (Ru) photosensitizer [Ru(bpy)3 ]2+ on the PMO pore surfaces. Quantum chemical calculations suggest that electron transfer between the Ru and Re complexes occurs through interactions between the molecular orbitals in the pore walls. These results should have applications to the design of efficient heterogeneous CO2 reduction photocatalysis systems.

8.
Eur J Med Chem ; 90: 53-67, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25461311

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) antagonists are candidates for treatment of type 2 diabetes, obesity and osteoporosis. However, few rational design strategies are currently available. Here, we utilized the helix12 (H12)-folding inhibition hypothesis, in combination with our previously determined X-ray crystal structure of PPARγ agonist MEKT-21 (6) complexed with the PPARγ ligand-binding domain, to design and develop a potent phenylalkynyl amide-type PPARγ antagonist 9i, focusing initially on pinpoint structural modification of the propanoic acid moiety of 6. Since 9i retained very weak, but distinct, PPARγ agonist activity, we next modified the distal benzene ring of 9i, aiming to delete the residual PPARγ agonist activity while retaining the antagonist activity. Introduction of a chlorine atom at the 2-position of the distal benzene ring afforded 9p, which exhibited potent, PPARγ-selective full antagonist activity without detectable agonist activity. We found that 9p stabilized the corepressor-PPARγ complex and suppressed basal PPARγ activity. This compound showed anti-adipogenesis activity at the cellular level. This agonist-antagonist switching concept based on the H12-folding inhibition hypothesis should also be applicable for designing other classes of PPARγ full antagonists.


Assuntos
Amidas/farmacologia , Desenho de Fármacos , PPAR gama/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Animais , Células COS , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Camundongos , Modelos Moleculares , Estrutura Molecular , Pioglitazona , Relação Estrutura-Atividade , Tiazolidinedionas/farmacologia
9.
Bioorg Med Chem Lett ; 24(17): 4276-80, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25086684

RESUMO

Using our recently developed assay system for full-genome-length hepatitis C virus (HCV) RNA replication in human hepatoma-derived Li23 cells (ORL8), we identified 4-(1,1,1,3,3,3-hexafluoro-2-hydroxy-2-propyl)aniline analog 1a as a novel HCV inhibitor. Structural modifications of 1a provided a series of sulfonamides 7 with much more potent HCV RNA replication-inhibitory activity than ribavirin. Compound 7a showed an additive anti-HCV effect in combination with standard anti-HCV therapy (IFN-α plus ribavirin). Since 7a generated reactive oxygen species (ROS) in the ORL8 system and its anti-HCV activity was blocked by vitamin E, its anti-HCV activity may be mediated at least in part by ROS.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , RNA Viral/biossíntese , Sulfonamidas/química , Sulfonamidas/farmacologia , Antivirais/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Hepacivirus/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , RNA Viral/genética , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
10.
Bioorg Med Chem Lett ; 24(16): 4001-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25017035

RESUMO

We previously reported that a α-benzylphenylpropanoic acid-type hPPARγ-selective agonist with a piperidine ring as the hydrophobic tail part (3) exhibited sub-micromolar-order hPPARγ agonistic activity. In order to enhance the activity, we planned to carry out structural development based on information obtained from the X-ray crystal structure of hPPARγ ligand binding domain (LBD) complexed with 3. However, the shape and/or nature of the binding pocket surrounding the piperidine ring of 3 could not be precisely delineated because the structure of the omega loop of the LBD was poorly defined. Therefore, we constructed and inserted a plausible omega loop by means of molecular dynamics simulation. We then used the reconstructed LBD structure to design new mono-, bi- and tricyclic amine-bearing compounds that might be expected to show greater binding affinity for the LBD. Here, we describe synthesis and evaluation of α-benzylphenylpropanoic acid derivatives 8. As expected, most of the newly synthesized compounds exhibited more potent hPPARγ agonistic activity and greater hPPARγ binding affinity than 3. Some of these compounds also showed comparable aqueous solubility to 3.


Assuntos
Aminas/química , Aminas/farmacologia , Simulação de Dinâmica Molecular , PPAR gama/agonistas , Aminas/síntese química , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Am Chem Soc ; 136(10): 4003-11, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24571655

RESUMO

Synthesis of a solid chelating ligand for the formation of efficient heterogeneous catalysts is highly desired in the fields of organic transformation and solar energy conversion. Here, we report the surfactant-directed self-assembly of a novel periodic mesoporous organosilica (PMO) containing 2,2'-bipyridine (bpy) ligands within the framework (BPy-PMO) from a newly synthesized organosilane precursor [(i-PrO)3Si-C10H6N2-Si(Oi-Pr)3] without addition of any other silane precursors. BPy-PMO had a unique pore-wall structure in which bipyridine groups were densely and regularly packed and exposed on the surface. The high coordination ability to metals was also preserved. Various bipyridine-based metal complexes were prepared using BPy-PMO as a solid chelating ligand such as Ru(bpy)2(BPy-PMO), Ir(ppy)2(BPy-PMO) (ppy = 2-phenylpyridine), Ir(cod)(OMe)(BPy-PMO) (cod = 1,5-cyclooctadiene), Re(CO)3Cl(BPy-PMO), and Pd(OAc)2(BPy-PMO). BPy-PMO showed excellent ligand properties for heterogeneous Ir-catalyzed direct C-H borylation of arenes, resulting in superior activity, durability, and recyclability to the homogeneous analogous Ir catalyst. An efficient photocatalytic hydrogen evolution system was also constructed by integration of a Ru-complex as a photosensitizer and platinum as a catalyst on the pore surface of BPy-PMO without any electron relay molecules. These results demonstrate the great potential of BPy-PMO as a solid chelating ligand and a useful integration platform for construction of efficient molecular-based heterogeneous catalysis systems.

12.
Chem Commun (Camb) ; 49(66): 7283-5, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23852448

RESUMO

Rate enhancement of the selective oxidation of hexoses was achieved on an ethynylpyridine (EPy)-functionalized Pt/Al2O3 catalyst. Host-guest interaction between the EPy ligand and a hexose sugar reactant produced a complex with induced chirality on the catalyst surface.

13.
Chemistry ; 18(7): 1992-8, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22241552

RESUMO

Enhanced fluorescence detection of metal ions was realized in a system consisting of a fluorescent 2,2'-bipyridine (BPy) receptor and light-harvesting periodic mesoporous organosilica (PMO). The fluorescent BPy receptor with two silyl groups was synthesized and covalently attached to the pore walls of biphenyl (Bp)-bridged PMO powder. The fluorescence intensity from the BPy receptor was significantly enhanced by the light-harvesting property of Bp-PMO, that is, the energy funneling into the BPy receptor from a large number of Bp groups in the PMO framework which absorbed UV light effectively. The enhanced emission of the BPy receptor was quenched upon the addition of a low concentration of Cu(2+) (0.15-1.2×10(-6) M), resulting in the sensitive detection of Cu(2+). Upon titration of Zn(2+) (0.3-6.0×10(-6) M), the fluorescence excitation spectrum was systematically changed with an isosbestic point at 375 nm through 1:1 complexation of BPy and Zn(2+) similar to that observed in BPy-based solutions, indicating almost complete preservation of the binding property of the BPy receptor despite covalent fixing on the solid surface. These results demonstrate that light-harvesting PMOs have great potential as supporting materials for enhanced fluorescence chemosensors.

15.
Chem Commun (Camb) ; 46(43): 8163-5, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20936233

RESUMO

Periodic mesoporous organosilica with densely packed pyridine units within the framework and crystal-like molecular-scale periodicity was synthesized. The framework pyridines were chemically active and fully accessible for protonation and Cu(2+) adsorption.

17.
Chemistry ; 12(30): 7839-47, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-16847986

RESUMO

Water-soluble poly(m-ethynylpyridine)s were designed to realize saccharide recognition in protic media. UV/Vis, 1H NMR, and fluorescence measurements revealed that the polymer forms a helical higher order structure by solvophobic interactions between the ethynylpyridine units in the protic medium. The resulting pore in the helix behaves like a binding pocket in proteins, by taking advantage of inwardly directed hydrogen-bonding functional groups of the polymers. Molecular recognition of native saccharides by the polymers was investigated by circular dichroism (CD). The chirality of the saccharide was transferred to the helical sense of the polymers, accompanied by the appearance of induced CDs (ICDs) in the absorptive region of the polymers. In MeOH/water (10/1), mannose and allose showed intense ICDs, and the apparent association constant between the polymer and D-mannose was 14 M(-1).


Assuntos
Carboidratos/química , Polímeros/síntese química , Proteínas , Piridinas/química , Configuração de Carboidratos , Ligação de Hidrogênio , Estrutura Molecular , Polímeros/química , Conformação Proteica , Estereoisomerismo
18.
J Am Chem Soc ; 127(46): 16189-96, 2005 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-16287308

RESUMO

A basic host polymer exhibiting pH-regulatable saccharide recognition has been investigated. Poly(m-ethynylpyridine) bearing dialkylamino groups forms helical complexes with saccharides to show induced circular dichroism (ICD). When trifluoroacetic acid was titrated on these complexes, the ICD was gradually enhanced until the amount of the acid reached ca. 0.5 molar equivalence versus the pyridine rings in the polymer, and further addition of the acid suppressed the ICD. The proper addition of the acid also increased the binding constants between the polymer and saccharides. These findings would be due to stabilization of the helical structure consisting of cisoid conformations for each of the adjacent pyridine pairs, which were caused by half-protonation of the pyridine rings. Computational analyses indicated that the pyridinium-pyridine dimeric structure prefers its cisoid conformation to its transoid one.


Assuntos
Hexoses/química , Polímeros/química , Prótons , Piridinas/química , Estrutura Molecular , Peso Molecular , Piridinas/síntese química , Análise Espectral , Titulometria , Ácido Trifluoracético/química
19.
J Am Chem Soc ; 126(7): 2022-7, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-14971935

RESUMO

Conformational transitions of biopolymers are well-known to be affected by noncovalent interactions with small molecules. We found that synthetic polymers, poly- and oligo(meta-ethynylpyridine)s, are guided to helical structures by uncharged hydrogen-bonding interactions with saccharides enclosed in the inner sphere of the polymers. Circular dichroism (CD) studies revealed that chirality of saccharide was transferred to the helical sense of the polymers. Among the n-octyl pyranosides of naturally important hexoses, beta-glucoside induced CDs most effectively. Size-regulated 18-mer and longer oligomers also showed the induced CDs similar to those for the polymers. Furthermore, native monosaccharides were extracted into less polar organic solvent with the help of the polymers, inducing similar CD signals.


Assuntos
Carboidratos/química , Polímeros/química , Piridinas/química , Dicroísmo Circular , Glucosídeos/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...