Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494386

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/genética , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas do Complexo da Replicase Viral/metabolismo , Infecção Persistente , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Sarampo/genética , Sarampo/metabolismo
2.
Virology ; 573: 1-11, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679629

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative disease caused by measles virus variants (SSPE viruses) that results in eventual death. Amino acid substitution(s) in the viral fusion (F) protein are key for viral propagation in the brain in a cell-to-cell manner, a specific trait of SSPE viruses, leading to neuropathogenicity. In this study, we passaged an SSPE virus in cultured human neuronal cells and isolated an adapted virus that propagated more efficiently in neuronal cells and exhibited increased cell-to-cell fusion. Contrary to our expectation, the virus harbored mutations in the large protein, a viral RNA-dependent RNA polymerase, and in the phosphoprotein, its co-factor, rather than in the F protein. Our results imply that upregulated RNA polymerase activity, which increases F protein expression and cell-to-cell fusion, could be a viral factor that provides a growth advantage and contributes to the adaptation of SSPE viruses to neuronal cells.


Assuntos
Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/fisiologia , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Regulação para Cima , Proteínas Virais de Fusão/genética , Proteínas do Complexo da Replicase Viral
3.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34643483

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell-cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection. Neuropathogenicity is closely related to the character of the viral fusion (F) protein, and amino acid substitution(s) in the F protein of some SSPE viruses confers F protein hyperfusogenicity, facilitating viral propagation in the CNS through cell-cell fusion and leading to neurovirulence. The F protein of an SSPE virus Kobe-1 strain, however, displayed only moderately enhanced fusion activity and required additional mutations in the M protein for neuropathogenicity in mice. We demonstrated here the mechanism for the M protein of the Kobe-1 strain supporting the fusion activity of the F protein and cooperatively inducing neurovirulence, even though each protein, independently, has no effect on virulence. The occurrence of SSPE has been estimated recently as one in several thousand in children who acquired measles under the age of 5 years, markedly higher than reported previously. The probability of a specific mutation (or mutations) occurring in the F protein conferring hyperfusogenicity and neuropathogenicity might not be sufficient to explain the high frequency of SSPE. The induction of neurovirulence by M protein synergistically with moderately fusogenic F protein could account for the high frequency of SSPE.


Assuntos
Encéfalo/virologia , Vírus SSPE/patogenicidade , Panencefalite Esclerosante Subaguda/virologia , Proteínas Virais de Fusão/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Genes Virais , Células Gigantes/virologia , Humanos , Fusão de Membrana , Camundongos , Mutação , Neurônios/virologia , Vírus SSPE/genética , Proteínas Virais de Fusão/genética , Proteínas da Matriz Viral/genética
4.
J Gen Virol ; 98(2): 143-154, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27911256

RESUMO

The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.


Assuntos
Vírus do Sarampo/química , Sarampo/virologia , Fusão de Membrana , Proteínas Virais de Fusão/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Humanos , Vírus do Sarampo/ultraestrutura , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Termodinâmica , Células Vero
5.
FEBS Lett ; 589(1): 152-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25479085

RESUMO

The fusion (F) protein of measles virus mediates membrane fusion. In this study, we investigated the molecular basis of the cell-cell fusion activity of the F protein. The N465H substitution in the heptad repeat B domain of the stalk region of the F protein eliminates this activity, but an additional mutation in the DIII domain of the head region - N183D, F217L, P219S, I225T or G240R - restores cell-cell fusion. Thermodynamically stabilized by the N465H substitution, the F protein required elevated temperature as high as 40 °C to promote cell-cell fusion, whereas all five DIII mutations caused destabilization of the F protein allowing the highest fusion activity at 30 °C. Stability complementation between the two domains conferred an efficient cell-cell fusion activity on the F protein at 37 °C.


Assuntos
Vírus do Sarampo/metabolismo , Mutação de Sentido Incorreto , Proteínas Virais de Fusão/metabolismo , Substituição de Aminoácidos , Animais , Fusão Celular , Chlorocebus aethiops , Vírus do Sarampo/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Células Vero , Proteínas Virais de Fusão/genética
6.
J Virol ; 87(4): 1974-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221571

RESUMO

Actin filament (F-actin) is believed to be involved in measles virus (MV) assembly as a cellular factor, but the precise roles remain unknown. Here we show that Phe at position 50 of the MV matrix (M) protein is important for its association with F-actin, through which the function of the M protein is regulated. In plasmid-expressed or MV-infected cells, a coimmunoprecipitation study revealed that the wild-type M (M-WT) protein associated strongly with F-actin but only weakly with the cytoplasmic tail of the hemagglutinin (H) protein. Since the F50P mutation allowed the M protein the enhanced interaction with the H protein in return for the sharply declined association with F-actin, the mutant M (M-F50P) protein strongly inhibited MV cell-cell fusion and promoted the uptake of the H protein into virus particles. The abundantly incorporated H protein resulted in the increase in infectivity of the F50P virus, although the virus contained a level of genome RNA equal to that of the WT virus. When the structure of F-actin was disrupted with cytochalasin D, the M-WT protein liberated from F-actin interacted with the H protein as tightly as the M-F50P protein, suppressing cell-cell fusion and promoting virus assembly comparably efficiently as the M-F50P protein. The cell-cell fusion activity of the WT virus appeared to be upheld by F-actin, which prevents the M protein interaction with the H protein. Our results indicate that F-actin in association with the M protein alters the interaction between the M and H proteins, thereby modulating MV cell-cell fusion and assembly.


Assuntos
Actinas/metabolismo , Hemaglutininas Virais/metabolismo , Interações Hospedeiro-Patógeno , Vírus do Sarampo/fisiologia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Actinas/genética , Animais , Fusão Celular , Linhagem Celular , Humanos , Imunoprecipitação , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...