Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 90: 52-64.e11, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798646

RESUMO

Research on chronic and acute myeloid leukemia (CML/AML) is focused on the development of novel therapeutic strategies to eliminate leukemic stem/progenitor cells that are responsible for drug resistance and disease relapse. Methods to culture hematopoietic stem/progenitor cells (HSPCs) from blood or bone marrow samples are indispensable for investigating disease pathogenesis and delineating drug responses in individual patients. A key challenge in this area is that primary leukemic cells grow poorly in culture or rapidly differentiate and lose their hematopoietic potential. Access to patient samples can also be limiting or cell numbers too low to enable large-scale assays and/or to obtain reproducible quantitative data. Here we describe a feeder cell-free and serum-free liquid culture system for the expansion of CD34+ HSPCs from CML/AML samples and healthy control tissues. Following 7 or 14 days of culture, CD34+ cells are expanded 30- to 65-fold or 400- to 800-fold, yielding a purity of ∼80% and ∼60% CD34+ cells, respectively. This system was adapted to a 96-well format to measure the sensitivity of leukemic and normal HSPCs to cytotoxic drugs after only 7 days. The assay requires only 103 cells per well to determine drug IC50 values and can be performed with uncultured and culture-expanded cells. Importantly, resulting IC50 values strongly correlate with those obtained in the classic colony-forming unit (CFU) assay. Compared with the CFU assay, this novel 96-well liquid-based assay designed specifically for leukemic and normal HSPCs is faster and simpler, with more flexible readout methods for selecting candidates for further drug development.


Assuntos
Bioensaio , Técnicas de Cultura de Células , Citotoxinas/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Meios de Cultura Livres de Soro , Ensaios de Seleção de Medicamentos Antitumorais , Células Alimentadoras , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia
2.
Plants (Basel) ; 9(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963673

RESUMO

The fruits of some Cornus species (dogwoods) are used in traditional medicine and considered potential anti-diabetic and hypolipemic agents. The aim of the study was to determine the ability of extracts from Cornus alba (CA), Cornus florida (CF), and Cornus sanguinea (CS) to inhibit digestive enzymes namely α-amylase, pancreatic lipase, and α-glucosidase, as well as isolation of compounds from plant material with the strongest effect. In addition, the phytochemical profile and antioxidant activity of extracts from three dogwoods were compared with HPLC-DAD-MS/MS and DPPH scavenging assay, respectively. Among the aqueous-ethanolic extracts, the activity of α-amylase was the most strongly inhibited by the fruit extract of CA (IC50 = 115.20 ± 14.31 µg/mL) and the activity of α-glucosidase by the fruit of CF (IC50 = 38.87 ± 2.65 µg/mL). Some constituents of CA fruit extract, such as coumaroylquinic acid, kaempferol, and hydroxytyrosol derivatives, were isolated. Among the three species of dogwood studied, the greatest biological potential was demonstrated by CA extracts, which are sources of phenolic acids and flavonoid compounds. In contrast, iridoid compounds or flavonoid glycosides found in fruits of CF or CS extracts do not play a significant role in inhibiting digestive enzymes but exert antioxidant activity.

3.
Cancer Biol Ther ; 16(1): 66-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25482931

RESUMO

The chemical nature of genetic drugs (e.g. antisense oligonucleotides, siRNA, vectors) requires a suitable carrier system to protect them from enzymatic degradation without changing their properties and enable efficient delivery into target cells. Lipid vectors for nucleic acid delivery that have been widely investigated for years can be very effective. As the majority of attempts made in the field of cancer gene therapy have focused on solid tumors, while blood cancer cells have attracted less attention, the latter became the subject of our investigation. The lipid carrier proposed here is based on liposomes constructed by others but the lipid composition is original. A liposome-coated lipoplex (L-cL) consists of a core arising from complexation of positively charged lipid and negatively charged oligodeoxynucleotide (ODN) or plasmid DNA coated by a neutral or anionic lipid bilayer. Moreover, our lipid vector demonstrates size stability and is able to retain a high content of enclosed plasmid DNA or antisense oligodeoxynucleotides (asODNs). Observed transfection efficacies of the tested preparation using a plasmid coding for fluorescent protein were up to 60-85% of examined leukemia cells (Jurkat T and HL-60 lines) in the absence or the presence of serum. When BCL­2 asODN was encapsulated in the L-cL, specific silencing of this gene product at both the mRNA and protein level and also a markedly decreased cell survival rate were observed in vitro. Moreover, biodistribution analysis in mice indicates prolonged circulation characteristic for PEG-modified liposomal carriers. Experiments on tumor-engrafted animals indicate substantial inhibition of tumor growth.


Assuntos
Portadores de Fármacos , Lipossomos , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Portadores de Fármacos/química , Estabilidade de Medicamentos , Feminino , Genes bcl-2 , Humanos , Lipossomos/química , Masculino , Camundongos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacocinética , Distribuição Tecidual , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Exp Hematol ; 42(10): 909-18.e1, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092555

RESUMO

MicroRNAs (miRNAs) are crucial for proper functioning of hematopoietic stem and progenitor cells (HSPCs). Members of the miRNA-125 family (consisting of miR-125a, miR-125b1, and miR-125b2) are known to confer a proliferative advantage on cells upon overexpression, to decrease the rate of apoptosis by targeting proapoptotic genes, and to promote differentiation toward the myeloid lineage in mice. However, many distinct biological effects of the three miR-125 species have been reported as well. In the current study, we set out to assess whether the three miRNA-125s that carry identical seed sequences could be functionally different. Our data show that overexpression of each of the three miR-125 family members preserves HSPCs in a primitive state in vitro, results in a competitive advantage upon serial transplantation, and promotes skewing toward the myeloid lineage. All miR-125 family members decreased the pool of phenotypically defined Lin(-)Sca(+)Kit(+)CD48(-)CD150(+) long-term hematopoietic stem cells, simultaneously increasing the self-renewal activity upon secondary transplantation. The downregulation of miR-125s in hematopoietic stem cells abolishes these effects and impairs long-term contribution to blood cell production. The introduction of a point mutation within the miRNA-125 seed sequence abolishes all abovementioned effects and leads to the restoration of normal hematopoiesis. Our results show that all miR-125 family members are similar in function, they likely operate in a seed-sequence-dependent manner, and they induce a highly comparable hematopoietic phenotype.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/fisiologia , Animais , Transplante de Medula Óssea , Divisão Celular , Linhagem da Célula , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Mutagênese Sítio-Dirigida , Mielopoese/genética , Oligonucleotídeos/farmacologia , Mutação Puntual , Quimera por Radiação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
5.
Exp Hematol ; 41(1): 113-23.e2, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22989761

RESUMO

Histone deacetylase inhibitors (HDIs) have been shown to enhance hematopoietic stem and progenitor cell activity and improve stem cell outcomes after ex vivo culture. Identification of gene targets of HDIs is required to understand the full potential of these compounds and can allow for improved stem cell culturing protocols. The molecular process that underlies the biological effects of valproic acid (VPA), a widely used HDI, on hematopoietic stem/progenitor cells was investigated by studying the early-response genes of VPA. These genes were linked to VPA-induced enhancement of cell function as measured by in vitro assays. Genome-wide gene expression studies revealed over-representation of genes involved in glutathione metabolism, receptor and signal transducer activity, and changes in the hematopoietic stem/progenitor cells surface profile after short, 24-hour VPA treatment. Sca-1, a well-known and widely used stem cell surface marker, was identified as a prominent VPA target. We showed that multiple HDIs induce Sca-1 expression on hematopoietic cells. VPA strongly preserved Sca-1 expression on Lin(-)Sca1(+)ckit(+) cells, but also reactivated Sca-1 on committed progenitor cells that were Sca-1(neg), thereby reverting them to the Lin(-)Sca1(+)ckit(+) phenotype. We demonstrated that reacquired Sca-1 expression coincided with induced self-renewal capacity as measured by in vitro replating assays, while Sca-1 itself was not required for the biological effects of VPA as demonstrated using Sca-1-deficient progenitor cells. In conclusion, our results show that VPA modulates several genes involved in multiple signal transduction pathways, of which Sca-1 was shown to mark cells with increased self-renewal capacity in response to HDIs.


Assuntos
Antígenos Ly/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Membrana/fisiologia , Ácido Valproico/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Ann N Y Acad Sci ; 1266: 138-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22901265

RESUMO

Attempts to improve hematopoietic reconstitution and engraftment potential of ex vivo-expanded hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful due to the inability to generate sufficient stem cell numbers and to excessive differentiation of the starting cell population. Although hematopoietic stem cells (HSCs) will rapidly expand after in vivo transplantation, experience from in vitro studies indicates that control of HSPC self-renewal and differentiation in culture remains difficult. Protocols that are based on hematopoietic cytokines have failed to support reliable amplification of immature stem cells in culture, suggesting that additional factors are required. In recent years, several novel factors, including developmental factors and chemical compounds, have been reported to affect HSC self-renewal and improve ex vivo stem cell expansion protocols. Here, we highlight early expansion attempts and review recent development in the extrinsic control of HSPC fate in vitro.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/farmacologia , Genes Homeobox , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Modelos Biológicos , Receptores Notch/metabolismo , Transdução de Sinais , Nicho de Células-Tronco
7.
Blood ; 119(13): 3050-9, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22327222

RESUMO

Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecules can serve as tools to manipulate cell fate decisions. Here, we tested 2 small molecules, valproic acid (VPA) and lithium (Li), to inhibit differentiation. HSPCs exposed to VPA and Li during differentiation-inducing culture preserved an immature cell phenotype, provided radioprotection to lethally irradiated recipients, and enhanced in vivo repopulating potential. Anti-differentiation effects of VPA and Li were observed also at the level of committed progenitors, where VPA re-activated replating activity of common myeloid progenitor and granulocyte macrophage progenitor cells. Furthermore, VPA and Li synergistically preserved expression of stem cell-related genes and repressed genes involved in differentiation. Target genes were collectively co-regulated during normal hematopoietic differentiation. In addition, transcription factor networks were identified as possible primary regulators. Our results show that the combination of VPA and Li potently delays differentiation at the biologic and molecular levels and provide evidence to suggest that combinatorial screening of chemical compounds may uncover possible additive/synergistic effects to modulate stem cell fate decisions.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Lítio/farmacologia , Ácido Valproico/farmacologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Feminino , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Lítio/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Fenótipo , Fatores de Tempo , Ácido Valproico/administração & dosagem
8.
Blood ; 119(2): 377-87, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22123844

RESUMO

Hematopoietic stem/progenitor cell (HSPC) traits differ between genetically distinct mouse strains. For example, DBA/2 mice have a higher HSPC frequency compared with C57BL/6 mice. We performed a genetic screen for micro-RNAs that are differentially expressed between LSK, LS(-)K(+), erythroid and myeloid cells isolated from C57BL/6 and DBA/2 mice. This analysis identified 131 micro-RNAs that were differentially expressed between cell types and 15 that were differentially expressed between mouse strains. Of special interest was an evolutionary conserved miR cluster located on chromosome 17 consisting of miR-99b, let-7e, and miR-125a. All cluster members were most highly expressed in LSKs and down-regulated upon differentiation. In addition, these microRNAs were higher expressed in DBA/2 cells compared with C57BL/6 cells, and thus correlated with HSPC frequency. To functionally characterize these microRNAs, we overexpressed the entire miR-cluster 99b/let-7e/125a and miR-125a alone in BM cells from C57BL/6 mice. Overexpression of the miR-cluster or miR-125a dramatically increased day-35 CAFC activity and caused severe hematopoietic phenotypes upon transplantation. We showed that a single member of the miR-cluster, namely miR-125a, is responsible for the majority of the observed miR-cluster overexpression effects. Finally, we performed genome-wide gene expression arrays and identified candidate target genes through which miR-125a may modulate HSPC fate.


Assuntos
Células Eritroides/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , MicroRNAs/genética , Células Mieloides/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células Eritroides/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células Mieloides/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...