Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EMBO Mol Med ; 13(10): e14554, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34486811

RESUMO

This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.


Assuntos
Doença de Depósito de Glicogênio , Doenças do Sistema Nervoso , Animais , Glucanos , Glicogênio , Camundongos
3.
J Neurosci ; 38(24): 5478-5494, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29773756

RESUMO

Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS.SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Degeneração Neural/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Axônios/metabolismo , Axônios/patologia , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neuropilina-1/biossíntese , Neuropilina-1/genética , Semaforina-3A/biossíntese , Semaforina-3A/genética
4.
Diabetes ; 67(3): 437-447, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246974

RESUMO

Polymorphism in TCF7L2, a component of the canonical Wnt signaling pathway, has a strong association with ß-cell dysfunction and type 2 diabetes through a mechanism that has yet to be defined. ß-Cells rely on cells in their microenvironment, including pericytes, for their proper function. Here, we show that Tcf7l2 activity in pancreatic pericytes is required for ß-cell function. Transgenic mice in which Tcf7l2 was selectively inactivated in their pancreatic pericytes exhibited impaired glucose tolerance due to compromised ß-cell function and glucose-stimulated insulin secretion. Inactivation of pericytic Tcf7l2 was associated with impaired expression of genes required for ß-cell function and maturity in isolated islets. In addition, we identified Tcf7l2-dependent pericytic expression of secreted factors shown to promote ß-cell function, including bone morphogenetic protein 4 (BMP4). Finally, we show that exogenous BMP4 is sufficient to rescue the impaired glucose-stimulated insulin secretion of transgenic mice, pointing to a potential mechanism through which pericytic Tcf7l2 activity affects ß-cells. To conclude, we suggest that pancreatic pericytes produce secreted factors, including BMP4, in a Tcf7l2-dependent manner to support ß-cell function. Our findings thus propose a potential cellular mechanism through which abnormal TCF7L2 activity predisposes individuals to diabetes and implicates abnormalities in the islet microenvironment in this disease.


Assuntos
Comunicação Celular , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Pericitos/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/uso terapêutico , Diferenciação Celular , Microambiente Celular , Glucose/metabolismo , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Intolerância à Glucose/fisiopatologia , Secreção de Insulina , Células Secretoras de Insulina/patologia , Ligantes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Mutação , Pericitos/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Técnicas de Cultura de Tecidos , Proteína 2 Semelhante ao Fator 7 de Transcrição/química , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
5.
Dis Model Mech ; 10(5): 645-654, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213588

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable motor neurodegenerative disease caused by a diversity of genetic and environmental factors that leads to neuromuscular degeneration and has pathophysiological implications in non-neural systems. Our previous work showed abnormal levels of mRNA expression for biomarker genes in non-neuronal cell samples from ALS patients. The same genes proved to be differentially expressed in the brain, spinal cord and muscle of the SOD1G93A ALS mouse model. These observations support the idea that there is a pathophysiological relevance for the ALS biomarkers discovered in human mesenchymal stem cells (hMSCs) isolated from bone marrow samples of ALS patients (ALS-hMSCs). Here, we demonstrate that ALS-hMSCs are also a useful patient-based model to study intrinsic cell molecular mechanisms of the disease. We investigated the ALS-hMSC response to oxidative DNA damage exerted by neocarzinostatin (NCS)-induced DNA double-strand breaks (DSBs). We found that the ALS-hMSCs responded to this stress differently from cells taken from healthy controls (HC-hMSCs). Interestingly, we found that ALS-hMSC death in response to induction of DSBs was dependent on autophagy, which was initialized by an increase of phosphorylated (p)AMPK, and blocked by the class III phosphoinositide 3-kinase (PI3K) and autophagy inhibitor 3-methyladenine (3MeA). ALS-hMSC death in response to DSBs was not apoptotic as it was caspase independent. This unique ALS-hMSC-specific response to DNA damage emphasizes the possibility that an intrinsic abnormal regulatory mechanism controlling autophagy initiation exists in ALS-patient-derived hMSCs. This mechanism may also be relevant to the most-affected tissues in ALS. Hence, our approach might open avenues for new personalized therapies for ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Autofagia , Células da Medula Óssea/metabolismo , Quebras de DNA de Cadeia Dupla , Células-Tronco Mesenquimais/metabolismo , Esclerose Lateral Amiotrófica/genética , Humanos
6.
J Autoimmun ; 52: 36-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24423642

RESUMO

Tissue plasminogen activator (tPA), a component of the PA/plasmin system, is elevated in inflammatory areas and plays a role in inflammatory neurological disorders. In the present study we explored the involvement of tPA and the potential immunomodulatory activity of tPA in experimental autoimmune myasthenia gravis (EAMG). Mice deficient in tPA (tPA(-/-)) present with a markedly more severe disease than wild type EAMG mice. In an attempt to treat EAMG with an 18aa peptide derived from the PA system inhibitor (PAI-1), designed to tether out the endogenous inhibitor, a significant suppression of disease severity was demonstrated. The more severe disease in tPA(-/-) mice was accompanied by a higher level of anti-AChR antibodies and increased expression of B-cell markers. In view of the essential role of B-cell activating factor (BAFF) in B-cell maturation, the expression of BAFF family components was tested. An increase in BAFF and BAFF receptor was observed in EAMG tPA(-/-) mice, whereas BCMA expression was reduced, consistent with the increased level of pathogenic antibodies and the more severe disease. Given the importance of T regulatory cells (Tregs) in EAMG, they were evaluated and their number was reduced in tPA(-/-) mice, in which EAMG was aggravated, whereas following PAI-1dp treatment, Tregs were replenished and the disease was ameliorated. The results show the involvement of tPA in EAMG, implying a protective role for tPA in EAMG pathogenesis. The amelioration of EAMG by PAI-1dp treatment suggests that the PA system may be considered a potential site for therapeutic intervention in neuroimmune diseases.


Assuntos
Miastenia Gravis Autoimune Experimental/sangue , Linfócitos T Reguladores/imunologia , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Autoanticorpos/sangue , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Miastenia Gravis Autoimune Experimental/imunologia , Fragmentos de Peptídeos/administração & dosagem , Inibidor 1 de Ativador de Plasminogênio/administração & dosagem , Receptores Colinérgicos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/genética , Regulação para Cima
7.
Hum Mol Genet ; 22(23): 4720-5, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23836781

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of motor neurons. Although most cases of ALS are sporadic (sALS) and of unknown etiology, there are also inherited familial ALS (fALS) cases that share a phenotype similar to sALS pathological and clinical phenotype. In this study, we have identified two new potential genetic ALS biomarkers in human bone marrow mesenchymal stem cells (hMSC) obtained from sALS patients, namely the TDP-43 (TAR DNA-binding protein 43) and SLPI (secretory leukocyte protease inhibitor). Together with the previously discovered ones-CyFIP2 and RbBP9, we investigated whether these four potential ALS biomarkers may be differentially expressed in tissues obtained from mutant SOD1(G93A) transgenic mice, a model that is relevant for at least 20% of the fALS cases. Quantitative real-time PCR analysis of brain, spinal cord and muscle tissues of the mSOD1(G93A) and controls at various time points during the progression of the neurological disease showed differential expression of the four identified biomarkers in correlation with (i) the tissue type, (ii) the stage of the disease and (iii) the gender of the animals, creating thus a novel spatiotemporal molecular signature of ALS. The biomarkers detected in the fALS animal model were homologous to those that were identified in hMSC of our sALS cases. These results support the possibility of a molecular link between sALS and fALS and may indicate common pathogenetic mechanisms involved in both types of ALS. Moreover, these results may pave the path for using the mSOD1(G93A) mouse model and these biomarkers as molecular beacons to evaluate the effects of novel drugs/treatments in ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/patologia , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Inibidor Secretado de Peptidases Leucocitárias/genética , Superóxido Dismutase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Esclerose Lateral Amiotrófica/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculos/metabolismo , Músculos/patologia , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...