Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 18(10-11): 495-509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34515602

RESUMO

Minimization of airborne virus transmission has become increasingly important due to pandemic and endemic infectious respiratory diseases. Physical distancing is a frequently advocated control measure, but the proximity-based transmission it is intended to control is challenging to incorporate into generalized, ventilation-based models. We utilize a size-dependent aerosol release model with turbulent dispersion to assess the impact of direct, near-field transport in conjunction with changes in ventilation, exposure duration, exhalation/inhalation rates, and masks. We demonstrate this model on indoor and outdoor scenarios to estimate the relative impacts on infection risk. The model can be expressed as a product of six multiplicative factors that may be used to identify opportunities for risk reduction. The additive nature of the short-range (proximity) and long-range (background) transmission components of the aerosol transport factor implies that they must be minimized simultaneously. Indoor simulations showed that close physical distances attenuated the impact of most other risk reduction factors. Increasing ventilation resulted in a 17-fold risk decrease at further physical distances but only a 6-fold decrease at shorter distances. Distance, emission rate, and duration also had large impacts on risk (11-65-fold), while air direction and inhalation rate had lower risk impacts (3-4-fold range). Surgical mask and respirator models predicted higher maximum risk impacts (33- and 280-fold, respectively) than cloth masks (4-fold). Most simulations showed decreasing risk at distances > 1-2 m (3-6 ft). The risk benefit of maintaining 2-m distance vs. 1 m depended substantially on the environmental turbulence and ventilation rate. Outdoors, long-range transmission was negligible and short-range transmission was the primary determinant of risk. Temporary passing events increased risk by up to 50 times at very slow walking speeds and close passing distances, but the relative risks outdoors were still much lower than indoors. The current model assumes turbulent dispersion typical of a given room size and ventilation rate. However, calm environments or confined airflows may increase transmission risks beyond levels predicted with this turbulent model.


Assuntos
COVID-19 , Distanciamento Físico , Aerossóis , Humanos , Pandemias , SARS-CoV-2
2.
Environ Int ; 88: 281-287, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26821331

RESUMO

Firefighters are at increased risk for exposure to toxic chemicals compared to the general population, but few studies of this occupational group have included biomonitoring. We measured selected phenolic chemicals in urine collected from 101 Southern California firefighters. The analytes included bisphenol A (BPA), triclosan, benzophenone-3 (BP-3), and parabens, which are common ingredients in a range of consumer products. BP-3, BPA, triclosan, and methyl paraben were detected in almost all study subjects (94-100%). The BP-3 geometric mean for firefighters was approximately five times higher than for a comparable National Health and Nutrition Examination Survey (NHANES) subgroup. Demographic and exposure data were collected from medical records and via a questionnaire, and covariates were examined to assess associations with BP-3 levels. BP-3 levels were elevated across all firefighter age groups, with the highest levels observed in the 35 to 39year old group. Body fat percentage had a significant inverse association with BP-3 concentrations. Our results indicate pervasive exposure to BP-3, BPA, triclosan, and methyl paraben in this population of firefighters, consistent with studies of other populations. Further research is needed to investigate possible explanations for the higher observed BP-3 levels, such as occupational or California-specific exposures.


Assuntos
Benzofenonas/urina , Exposição Ambiental , Poluentes Ambientais/urina , Fenóis/urina , Adulto , California , Monitoramento Ambiental , Feminino , Bombeiros , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...