Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26083, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390173

RESUMO

The building sector's significant greenhouse gas emissions and energy consumption present added challenges to meeting European climate commitments amidst rapid population growth. In Luxembourg, single-family houses dominate the residential buildings, noticeably contributing to construction waste and CO2 emissions. This study compares the environmental impacts of a three-story reinforced concrete masonry single-family house and an identical timber building in Luxembourg, emphasizing greenhouse gas emissions and embodied energy. A cradle-to-grave life cycle assessment was conducted using Building Information Modelling (BIM) models to analyze the global warming potential and primary energy requirements. Environmental product declarations from the producers and the ÖKOBAUDAT German database were used to determine the environmental impacts of the materials. The results show that the timber building outperforms the concrete building with a 43.5% lower global warming potential, while the concrete building demonstrates a 15.6% reduction in primary energy demand. This aligns with the average outcomes of seven similar studies discussed in this paper, at 33.2% and 4.7%, respectively. Moreover, the timber building is 78.6% lighter than the concrete one. When evaluating benefits and loads beyond the system boundary, the timber building provides 3.6 and 4 times greater advantages in terms of global warming potential and primary energy, respectively, compared to the reinforced concrete masonry building. Additionally, the study explores the impact of reusing the floors in the timber building. The cradle-to-grave LCA reveals that reusing the timber slabs improves the building's global warming potential and primary energy by 2.4% and 1.2%, respectively. However, when considering the benefits and loads beyond the system boundary, floor system reuse exhibits a 38.9% surge in global warming advantages while reducing primary energy benefits by 28.1%. The findings advocate for a policy promoting timber construction and reuse in Luxembourg, aiming to achieve the net-zero emission target by 2050.

2.
J Environ Manage ; 282: 111879, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465712

RESUMO

As the construction sector is shifting towards circular economy models, the role of mineral construction materials as main waste fraction in terms of volumes is crucial. A characterization of this mineral stock, as well as the waste derived from it is decisive in ensuring the application of the best practices of circular economy. This paper describes a methodology for assessing the mineral building stock through a combination of geospatial and image analysis. By analysing old topographic maps, buildings are grouped according to their building age into different typologies and based on these maps the construction and demolition activity is evaluated. The mineral stock is assessed and estimations of the mineral construction and demolition waste (CDW) is generated for different stochastic scenarios. This methodology is applied exemplarily on the country of Luxembourg. It was found that the total mineral construction stock for Luxembourg is 276.75 Mt and has been growing at a rate of 20.81%-24.39% in the last 30 years. Furthermore, the study identified a mean age of the urban building stock of about 60 years and a typical maximum building lifetime of 122 years. Based on the stochastic projections the mineral CDW generated from the existing building stock is expected to be up to 226.9 Mt by 2100, while if future building scenarios are considered, it can be as high as 885.3 Mt. The annual CDW production is expected to be sufficient for a viable concrete recycling activity if regulations on the waste volume flows are made available.


Assuntos
Indústria da Construção , Gerenciamento de Resíduos , Materiais de Construção , Resíduos Industriais/análise , Minerais , Reciclagem
3.
Int Sch Res Notices ; 2015: 439095, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27347518

RESUMO

The present paper deals with the design, the repeatability, and the comparison to literature data of a new measuring device called "Rotameter" to characterize the rotational knee laxity or the tibia-femoral rotation (TFR). The initial prototype P1 of the Rotameter is shortly introduced and then modified according to trials carried out on a prosthetic leg and on five healthy volunteers, leading therefore to an improved prototype P2. A comparison of results obtained from P1 and P2 with the same male subject shows the enhancements of P2. Intertester and intratester repeatability of this new device were shown and it was observed that rotational laxities of left and right knees are the same for a healthy subject. Moreover, a literature review showed that measurements with P2 presented lower TFR values than other noninvasive devices. The measured TFR versus torque characteristic was quite similar to other invasive devices, which are more difficult to use and harmful to the patient. Hence, our prototype P2 proved to be an easy-to-use and suitable device for quantifying rotational knee laxity. A forthcoming study will validate the Rotameter thanks to an approach based on computed tomography in order to evaluate its precision.

4.
Int Sch Res Notices ; 2015: 705201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27347541

RESUMO

The purpose of this study is to validate a noninvasive rotational knee laxity measuring device called "Rotameter P2" with an approach based on Computed Tomography (CT). This CT-approach using X-rays is hence invasive and can be regarded as a precise reference method that may also be applied to similar devices. An error due to imperfect femur fixation was observed but can be neglected for small torques. The most significant estimation error is due to the unavoidable soft tissues rotation and hence flexibility in the measurement chain. The error increases with the applied torque. The assessment showed that the rotational knee angle measured with the Rotameter is still overestimated because of thigh and femur displacement, soft tissues deformation, and measurement artefacts adding up to a maximum of 285% error at +15 Nm for the Internal Rotation of female volunteers. This may be questioned if such noninvasive devices for measuring the Tibia-Femoral Rotation (TFR) can help diagnosing knee pathologies and investigate ligament reconstructive surgery.

5.
J Exp Orthop ; 2(1): 14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26914882

RESUMO

BACKGROUND: As several new tibial osteotomy plates recently appeared on the market, the aim of the present study was to compare mechanical static and fatigue strength of three newly designed plates with gold standard plates for the treatment of medial knee joint osteoarthritis. METHODS: Sixteen fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO) according to standard techniques, using five TomoFix standard plates, five PEEKPower plates and six iBalance implants. Static compression load to failure and load-controlled cyclic fatigue failure tests were performed. Forces, horizontal and vertical displacements were measured; rotational permanent plastic deformations, maximal displacement ranges in the hysteresis loops of the cyclic loading responses and dynamic stiffness were determined. RESULTS: Static compression load to failure tests revealed that all plates showed sufficient stability up to 2400 N without any signs of opposite cortex fracture, which occurred above this load in all constructs at different load levels. During the fatigue failure tests, screw breakage in the iBalance group and opposite cortex fractures in all constructs occurred only under physiological loading conditions (<2400 N). The highest fatigue strength in terms of maximal load and number of cycles performed prior to failure was observed for the ContourLock group followed by the iBalance implants, the TomoFix standard (std) and small stature (sm) plates. The PEEKPower group showed the lowest fatigue strength. CONCLUSIONS: All plates showed sufficient stability under static loading. Compared to the TomoFix and the PEEKPower plates, the ContourLock plate and iBalance implant showed a higher mechanical fatigue strength during cyclic fatigue testing. These data suggest that both mechanical static and fatigue strength increase with a wider proximal T-shaped plate design together with diverging proximal screws as used in the ContourLock plate or a closed-wedge construction as in the iBalance design. Mechanical strength of the bone-implant constructs decreases with a narrow T-shaped proximal end design and converging proximal screws (TomoFix) or a short vertical plate design (PEEKPower Plate). Whenever high mechanical strength is required, a ContourLock or iBalance plate should be selected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...