Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brain Pathol ; : e13287, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986433

RESUMO

Many genes have been linked to amyotrophic lateral sclerosis (ALS), including never in mitosis A (NIMA)-related kinase 1 (NEK1), a serine/threonine kinase that plays a key role in several cellular functions, such as DNA damage response and cell cycle regulation. Whole-exome sequencing studies have shown that NEK1 mutations are associated with an increased risk for ALS, where a significant enrichment of NEK1 loss-of-function (LOF) variants were found in individuals with ALS compared to controls. In particular, the p.Arg261His missense variant was associated with significantly increased disease susceptibility. This case series aims to understand the neuropathological phenotypes resulting from NEK1 mutations in ALS. We examined a cohort of three Scottish patients with a mutation in the NEK1 gene and evaluated the distribution and cellular expression of NEK1, as well as the abundance of phosphorylated TDP-43 (pTDP-43) aggregates, in the motor cortex compared to age- and sex-matched control tissue. We show pathological, cytoplasmic TDP-43 aggregates in all three NEK1-ALS cases. NEK1 protein staining revealed no immunoreactivity in two of the NEK1-ALS cases, indicating a LOF and corresponding to a reduction in NEK1 mRNA as detected by in situ hybridisation. However, the p.Arg261His missense mutation resulted in an increase in NEK1 mRNA molecules and abundant NEK1-positive cytoplasmic aggregates, with the same morphologic appearance, and within the same cells as co-occurring TDP-43 aggregates. Here we show the first neuropathological assessment of a series of ALS cases carrying mutations in the NEK1 gene. Specifically, we show that TDP-43 pathology is present in these cases and that potential NEK1 LOF can either be mediated through loss of NEK1 translation or through aggregation of NEK1 protein as in the case with p.Arg261His mutation, a potential novel pathological feature of NEK1-ALS.

2.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854008

RESUMO

Background: Cognitive and behavioural symptoms associated with amyotrophic lateral sclerosis and frontotemporal spectrum disorders (ALSFTSD) are thought to be driven, at least in part, by the pathological accumulation of TDP-43. Methods: Here we examine post-mortem tissue from six brain regions associated with cognitive and behavioural symptoms in a cohort of 30 people with sporadic ALS (sALS), a proportion of which underwent standardized neuropsychological behavioural assessment as part of the Edinburgh Cognitive ALS Screen (ECAS). Results: Overall, the behavioural screen performed as part of the ECAS predicted accumulation of pathological phosphorylated TDP-43 (pTDP-43) with 100% specificity and 86% sensitivity in behaviour-associated brain regions. Notably, of these regions, pathology in the amygdala was the most predictive correlate of behavioural dysfunction in sALS. In the amygdala of sALS patients, we show variation in morphology, cell type predominance, and severity of pTDP-43 pathology. Further, we demonstrate that the presence and severity of intra-neuronal pTDP-43 pathology, but not astroglial pathology, or phosphorylated Tau pathology, is associated with behavioural dysfunction. Cases were also evaluated using a TDP-43 aptamer (TDP-43APT), which revealed that pathology was not only associated with behavioural symptoms, but also with ferritin levels, a measure of brain iron. Conclusions: Intra-neuronal pTDP-43 and cytoplasmic TDP-43APT pathology in the amygdala is associated with behavioural symptoms in sALS. TDP-43APT staining intensity is also associated with increased ferritin, regardless of behavioural phenotype, suggesting that ferritin increases may occur upstream of clinical manifestation, in line with early TDP-43APT pathology, representing a potential region-specific imaging biomarker of early disease in ALS.

3.
Acta Neuropathol ; 147(1): 50, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443601

RESUMO

TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Aptâmeros de Nucleotídeos , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , Anticorpos
4.
Brain ; 146(12): 5124-5138, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450566

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , NF-kappa B , Doenças Neurodegenerativas/genética , Demência Frontotemporal/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA
5.
BMJ Open ; 13(2): e064169, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725099

RESUMO

OBJECTIVES: Motor neuron disease (MND) is an incurable progressive neurodegenerative disease with limited treatment options. There is a pressing need for innovation in identifying therapies to take to clinical trial. Here, we detail a systematic and structured evidence-based approach to inform consensus decision making to select the first two drugs for evaluation in Motor Neuron Disease-Systematic Multi-arm Adaptive Randomised Trial (MND-SMART: NCT04302870), an adaptive platform trial. We aim to identify and prioritise candidate drugs which have the best available evidence for efficacy, acceptable safety profiles and are feasible for evaluation within the trial protocol. METHODS: We conducted a two-stage systematic review to identify potential neuroprotective interventions. First, we reviewed clinical studies in MND, Alzheimer's disease, Huntington's disease, Parkinson's disease and multiple sclerosis, identifying drugs described in at least one MND publication or publications in two or more other diseases. We scored and ranked drugs using a metric evaluating safety, efficacy, study size and study quality. In stage two, we reviewed efficacy of drugs in MND animal models, multicellular eukaryotic models and human induced pluripotent stem cell (iPSC) studies. An expert panel reviewed candidate drugs over two shortlisting rounds and a final selection round, considering the systematic review findings, late breaking evidence, mechanistic plausibility, safety, tolerability and feasibility of evaluation in MND-SMART. RESULTS: From the clinical review, we identified 595 interventions. 66 drugs met our drug/disease logic. Of these, 22 drugs with supportive clinical and preclinical evidence were shortlisted at round 1. Seven drugs proceeded to round 2. The panel reached a consensus to evaluate memantine and trazodone as the first two arms of MND-SMART. DISCUSSION: For future drug selection, we will incorporate automation tools, text-mining and machine learning techniques to the systematic reviews and consider data generated from other domains, including high-throughput phenotypic screening of human iPSCs.


Assuntos
Doença dos Neurônios Motores , Humanos , Consenso , Células-Tronco Pluripotentes Induzidas , Doença dos Neurônios Motores/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
J Pathol Clin Res ; 9(1): 44-55, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226890

RESUMO

Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) are traditionally considered strictly neurological disorders. However, clinical presentation is not restricted to neurological systems, and non-central nervous system (CNS) manifestations, particularly gastrointestinal (GI) symptoms, are common. Our objective was to understand the systemic distribution of pathology in archived non-CNS tissues, taken as part of routine clinical practice during life from people with ALS. We examined tissue from 13 people who went on to develop ALS; including sporadic ALS (n = 12) and C9orf72 hexanucleotide repeat expansion (n = 1). The tissue cohort consisted of 68 formalin-fixed paraffin embedded samples from 21 surgical cases (some patients having more than one case over their lifetimes), from 8 organ systems, which we examined for evidence of phosphorylated TDP-43 (pTDP-43) pathology. We identified pTDP-43 aggregates in multiple cell types of the GI tract, including macrophages and dendritic cells within the lamina propria; as well as ganglion/neuronal and glial cells of the myenteric plexus. Aggregates were also noted within lymph node parenchyma, blood vessel endothelial cells, and chondrocytes. We note that in all cases with non-CNS pTDP-43 pathology, aggregates were present prior to ALS diagnosis and in some instances preceded neurological symptom onset by more than 10 years. These data imply that patients with microscopically unexplained non-CNS symptoms could have occult protein aggregation that could be detected many years prior to neurological involvement.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Células Endoteliais
7.
Evolution ; 75(2): 450-463, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33320333

RESUMO

Dietary restriction (DR), limiting calories or specific nutrients without malnutrition, extends lifespan across diverse taxa. Traditionally, this lifespan extension has been explained as a result of diet-mediated changes in the trade-off between lifespan and reproduction, with survival favored when resources are scarce. However, a recently proposed alternative suggests that the selective benefit of the response to DR is the maintenance of reproduction. This hypothesis predicts that lifespan extension is a side effect of benign laboratory conditions, and DR individuals would be frailer and unable to deal with additional stressors, and thus lifespan extension should disappear under more stressful conditions. We tested this by rearing outbred female fruit flies (Drosophila melanogaster) on 10 different protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (Pseudomonas entomophila), injured with a sterile pinprick, or unstressed. We monitored lifespan, fecundity, and measures of aging. DR extended lifespan and reduced reproduction irrespective of injury and infection. Infected flies on lower protein diets had particularly poor survival. Exposure to infection and injury did not substantially alter the relationship between diet and aging patterns. These results do not provide support for lifespan extension under DR being a side effect of benign laboratory conditions.


Assuntos
Evolução Biológica , Dietoterapia , Drosophila melanogaster , Longevidade , Estresse Fisiológico , Animais , Feminino , Infecções , Pseudomonas , Reprodução , Ferimentos e Lesões
8.
Front Neurosci ; 14: 511, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523508

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive fatal neurodegenerative condition. There are no effective treatments. The only globally licensed medication, that prolongs life by 2-3 months, was approved by the FDA in 1995. One reason for the absence of effective treatments is disease heterogeneity noting that ALS is clinically heterogeneous and can be considered to exist on a neuropathological spectrum with frontotemporal dementia. Despite this significant clinical heterogeneity, protein misfolding has been identified as a unifying pathological feature in these cases. Based on this shared pathophysiology, we carried out a systematic review and meta-analysis to assess the therapeutic efficacy of compounds that specifically target protein misfolding in preclinical studies of both ALS and FTD. Methods: Three databases: (i) PubMed, (ii) MEDLINE, and (iii) EMBASE were searched. All studies comparing the effect of treatments targeting protein misfolding in pre-clinical ALS or FTD models to a control group were retrieved. Results: Systematic review identified 70 pre-clinical studies investigating the effects of therapies targeting protein misfolding on survival. Meta-analysis revealed that targeting protein misfolding did significantly improve survival compared to untreated controls (p < 0.001, df = 68, α = 0.05, CI 1.05-1.16), with no evidence of heterogeneity between studies (I 2 = 0%). Further subgroup analyses, evaluating the effect of timing of these interventions, showed that, only treating prior to symptom onset (n = 33), significantly improved survival (p < 0.001, df = 31, α = 0.05, CI 1.08-1.29), although this likely reflects the inadequate sample size of later time points. Furthermore, arimoclomol was found to significantly reduce secondary outcome measures including: (i) histological outcomes, (ii) behavioral outcomes, and (iii) biochemical outcomes (p < 0.005). Conclusions: This analysis supports the hypothesis that protein misfolding plays an important role in the pathogenesis of ALS and FTD and that targeting protein misfolding, at least in pre-clinical models, can significantly improve survival, especially if such an intervention is administered prior to symptom onset.

9.
PLoS Genet ; 16(3): e1008679, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32119721

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1007533.].

10.
Brain Commun ; 1(1): fcz009, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32133457

RESUMO

Interventions targeting mitochondrial dysfunction have the potential to extend survival in preclinical models of amyotrophic lateral sclerosis. The aim of this systematic review was to assess the efficacy of targeting mitochondria as a potential therapeutic target in amyotrophic lateral sclerosis. Preclinical studies written in the English language were identified with no restrictions on publication date from PubMed, Medline and EMBASE databases. All studies adopting interventions targeting mitochondria to treat amyotrophic lateral sclerosis in genetic or drug-induced organism models were considered for inclusion. A total of 76 studies were included in the analysis. Survival data were extracted, and the meta-analysis was completed in RevMan 5 software. We show that targeting mitochondrial dysfunction in amyotrophic lateral sclerosis results in a statistically significant improvement in survival (Z = 5.31; P<0.00001). The timing of administration of the intervention appears to affect the improvement in survival, with the greatest benefit occurring for interventions given prior to disease onset. Interventions at other time points were not significant, although this is likely to be secondary to a lack of publications examining these timepoints. The quality score had no impact on efficacy, and publication bias revealed an overestimation of the effect size, owing to one outlier study; excluding this led to the recalculated effect size changing from 5.31 to 3.31 (P<0.00001). The extant preclinical literature indicates that targeting mitochondrial dysfunction may prolong survival in amyotrophic lateral sclerosis, particularly if the intervention is administered early. A limitation of current research is a significant bias towards models based on superoxide dismutase 1, with uncertainty about generalisability to amyotrophic lateral sclerosis with an underlying TAR DNA binding protein 43 proteinopathy. However, further mechanistic research is clearly warranted in this field.

11.
PLoS Genet ; 14(7): e1007533, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059538

RESUMO

RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga-which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Metagenômica , Interferência de RNA/imunologia , Vírus de RNA/imunologia , RNA Viral/genética , Animais , Anelídeos/genética , Anelídeos/imunologia , Anelídeos/microbiologia , Proteínas Argonautas/genética , Cnidários/genética , Cnidários/imunologia , Cnidários/microbiologia , Elementos de DNA Transponíveis/genética , Equinodermos/genética , Equinodermos/imunologia , Equinodermos/microbiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Moluscos/genética , Moluscos/imunologia , Moluscos/microbiologia , Phaeophyceae/genética , Phaeophyceae/imunologia , Phaeophyceae/microbiologia , Filogenia , Poríferos/genética , Poríferos/imunologia , Poríferos/microbiologia , Vírus de RNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , Ribonuclease III/genética , Análise de Sequência de RNA
12.
Virus Evol ; 4(1): vey009, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29644097

RESUMO

Drosophila suzukii (Matsumura) is one of the most damaging and costly pests to invade temperate horticultural regions in recent history. Conventional control of this pest is challenging, and an environmentally benign microbial biopesticide is highly desirable. A thorough exploration of the pathogens infecting this pest is not only the first step on the road to the development of an effective biopesticide, but also provides a valuable comparative dataset for the study of viruses in the model family Drosophilidae. Here we use a metatransciptomic approach to identify viruses infecting this fly in both its native (Japanese) and invasive (British and French) ranges. We describe eighteen new RNA viruses, including members of the Picornavirales, Mononegavirales, Bunyavirales, Chuviruses, Nodaviridae, Tombusviridae, Reoviridae, and Nidovirales, and discuss their phylogenetic relationships with previously known viruses. We also detect 18 previously described viruses of other Drosophila species that appear to be associated with D. suzukii in the wild.

13.
PLoS Biol ; 13(7): e1002210, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172158

RESUMO

Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.


Assuntos
Evolução Biológica , Drosophila melanogaster/virologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila simulans/virologia , Feminino , Masculino , Metagenômica , Dados de Sequência Molecular , RNA/análise , Interferência de RNA , Proteínas Virais/química , Wolbachia/isolamento & purificação
14.
Biol Lett ; 4(6): 758-61, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-18782733

RESUMO

The recombinational environment influences patterns of molecular evolution through the effects of Hill-Robertson interference. Here, we examine genome-wide patterns of gene expression with respect to recombinational environment in Drosophila melanogaster. We find that regions of the genome lacking crossing over exhibit elevated levels of expression, and this is most pronounced for genes on the entirely non-crossing over fourth chromosome. We find no evidence for differences in the patterns of gene expression between regions of high, intermediate and low crossover frequencies. These results suggest that, in the absence of crossing over, selection to maintain control of expression may be compromised, perhaps due to the accumulation of deleterious mutations in regulatory regions. Alternatively, higher gene expression may be evolving to compensate for defective protein products or reduced translational efficiency.


Assuntos
Troca Genética , Drosophila melanogaster/genética , Expressão Gênica , Genoma de Inseto , Animais , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...