Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4123, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433811

RESUMO

Inhibition of bacterial cell wall synthesis by antibiotics such as ß-lactams is thought to cause explosive lysis through loss of cell wall integrity. However, recent studies on a wide range of bacteria have suggested that these antibiotics also perturb central carbon metabolism, contributing to death via oxidative damage. Here, we genetically dissect this connection in Bacillus subtilis perturbed for cell wall synthesis, and identify key enzymatic steps in upstream and downstream pathways that stimulate the generation of reactive oxygen species through cellular respiration. Our results also reveal the critical role of iron homeostasis for the oxidative damage-mediated lethal effects. We show that protection of cells from oxygen radicals via a recently discovered siderophore-like compound uncouples changes in cell morphology normally associated with cell death, from lysis as usually judged by a phase pale microscopic appearance. Phase paling appears to be closely associated with lipid peroxidation.


Assuntos
Antibacterianos , Bacillus subtilis , Morte Celular , Antibacterianos/farmacologia , Bacillus subtilis/genética , Carbono , Parede Celular , Espécies Reativas de Oxigênio
2.
Front Microbiol ; 13: 1004737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312962

RESUMO

Growth of most rod-shaped bacteria is accompanied by the insertion of new peptidoglycan into the cylindrical cell wall. This insertion, which helps maintain and determine the shape of the cell, is guided by a protein machine called the rod complex or elongasome. Although most of the proteins in this complex are essential under normal growth conditions, cell viability can be rescued, for reasons that are not understood, by the presence of a high (mM) Mg2+ concentration. We screened for natural product compounds that could rescue the growth of mutants affected in rod-complex function. By screening > 2,000 extracts from a diverse collection of actinobacteria, we identified a compound, mirubactin C, related to the known iron siderophore mirubactin A, which rescued growth in the low micromolar range, and this activity was confirmed using synthetic mirubactin C. The compound also displayed toxicity at higher concentrations, and this effect appears related to iron homeostasis. However, several lines of evidence suggest that the mirubactin C rescuing activity is not due simply to iron sequestration. The results support an emerging view that the functions of bacterial siderophores extend well beyond simply iron binding and uptake.

3.
PLoS Pathog ; 18(7): e1010617, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862345

RESUMO

Copper is an essential micronutrient for most organisms that is required as a cofactor for crucial copper-dependent enzymes encoded by both prokaryotes and eukaryotes. Evidence accumulated over several decades has shown that copper plays important roles in the function of the mammalian immune system. Copper accumulates at sites of infection, including the gastrointestinal and respiratory tracts and in blood and urine, and its antibacterial toxicity is directly leveraged by phagocytic cells to kill pathogens. Copper-deficient animals are more susceptible to infection, whereas those fed copper-rich diets are more resistant. As a result, copper resistance genes are important virulence factors for bacterial pathogens, enabling them to detoxify the copper insult while maintaining copper supply to their essential cuproenzymes. Here, we describe the accumulated evidence for the varied roles of copper in the mammalian response to infections, demonstrating that this metal has numerous direct and indirect effects on immune function. We further illustrate the multifaceted response of pathogenic bacteria to the elevated copper concentrations that they experience when invading the host, describing both conserved and species-specific adaptations to copper toxicity. Together, these observations demonstrate the roles of copper at the host-pathogen interface and illustrate why bacterial copper detoxification systems can be viable targets for the future development of novel antibiotic drug development programs.


Assuntos
Cobre , Corpo Humano , Adaptação Fisiológica , Animais , Antibacterianos/farmacologia , Bactérias , Cobre/farmacologia , Humanos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...