Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792235

RESUMO

A general mechanism for catalytic urethane formation in the presence of acid catalysts, dimethyl hydrogen phosphate (DMHP), methanesulfonic acid (MSA), and trifluoromethanesulfonic acid (TFMSA), has been studied using theoretical methods. The reaction of phenyl isocyanate (PhNCO) and butan-1-ol (BuOH) has been selected to describe the energetic and structural features of the catalyst-free urethane formation. The catalytic activities of DMHP, MSA, and TFMSA have been compared by adding them to the PhNCO-BuOH model system. The thermodynamic properties of the reactions were computed by using the G3MP2BHandHLYP composite method. It was revealed that in the presence of trifluoromethanesulfonic acid, the activation energy was the lowest within the studied set of catalysts. The achieved results indicate that acids can be successfully employed in urethane synthesis and the mechanism was described.

2.
Phys Chem Chem Phys ; 26(8): 7103-7108, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345799

RESUMO

A computational study of the stoichiometric reaction and catalytic effect of 2-dimethylaminoethanol (DMEA) in urethane formation was performed. DMEA, besides its catalytic tertiary amine site, contains a hydroxyl group that can react with isocyanates and thus, it can affect the synthesis of polyurethane. In the catalytic system, the reaction between phenyl isocyanate and butan-1-ol, involving DMEA as a catalyst, was investigated. Meanwhile, for the competitive stoichiometric process, the reaction between phenyl isocyanate and DMEA was also considered. Both reactions were investigated by using the G3MP2BHandHLYP composite method and acetonitrile was chosen as the solvent. It was revealed that both pathways (catalytic and stoichiometric processes) are similar thermodynamically, but the catalytic reaction is preferred kinetically, which indicates the applicability of DMEA in urethane synthesis.

3.
Sci Rep ; 13(1): 17950, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863884

RESUMO

A theoretical study of urethane formation through the reaction of phenyl isocyanate and butan-1-ol was carried out, without and in the presence of morpholine, and 4-methylmorpholine catalysts. The reaction with and without catalysts was studied at BHandHLYP/6-31G(d) and G3MP2BHandHLYP levels of theories. The reaction mechanism in the presence of catalysts differs significantly from the catalyst-free case and includes seven steps. The catalyst-free system was investigated along with the catalytic process, the geometries were optimized, and the corresponding thermodynamic properties were calculated. Calculated reactant complexes were compared with crystal structures of morpholine, and 4-methylmorpholine complexed with diols found in the literature. The structures were strikingly similar and thus, the validity of the proposed and studied general organocatalytic reaction mechanism was partially verified. Meanwhile, an irregularity in the energy profile occurred due to the zwitterionic nature of an intermediate. To handle the irregularity, a correction was implemented which handles the appearance of a zwitterionic structure and the corresponding energetic properties. The results showed that morpholine is less effective catalyst compared to 4-methylmorpholine, which can be associated with the difference in their PA (1523.95 and 963.07 kJ/mol, respectively). The current results prove the important role of amine catalysts in urethane synthesis which can be applied in polyurethane catalyst design and development.

4.
Phys Chem Chem Phys ; 24(34): 20538-20545, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35997010

RESUMO

A kinetic and mechanistic investigation of the alcoholysis of phenyl isocyanate (PhNCO) using stoichiometric butan-1-ol (BuOH) in acetonitrile in the presence of different tertiary amine catalysts was performed. The reaction mechanisms in the absence and presence of experimentally applied catalysts were described by using the G3MP2BHandHLYP composite method. The apparent activation energies obtained from the calculations were in good agreement with the experimental data (ΔΔE = <2 kJ mol-1). Both experimental and theoretical results proved the important effect of tertiary amine catalysts on urethane formation. These results can aid in polyurethane catalyst design and development.

5.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890635

RESUMO

The alcoholysis of phenyl isocyanate (PhNCO) using stoichiometric butan-1-ol (BuOH) in acetonitrile in the presence of different cyclic amine catalysts was examined using a combined kinetic and mechanistic approach. The molecular mechanism of urethane formation without and in the presence of cyclic amine catalysts was studied using the G3MP2BHandHLYP composite method in combination with the SMD implicit solvent model. It was found that the energetics of the model reaction significantly decreased in the presence of catalysts. The computed and measured thermodynamic properties were in good agreement with each other. The results prove that amine catalysts are important in urethane synthesis. Based on the previous and current results, the design of new catalysts will be possible in the near future.

6.
Polymers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35012031

RESUMO

Polyurethanes (PUs) are widely used in different applications, and thus various synthetic procedures including one or more catalysts are applied to prepare them. For PU foams, the most important catalysts are nitrogen-containing compounds. Therefore, in this work, the catalytic effect of eight different nitrogen-containing catalysts on urethane formation will be examined. The reactions of phenyl isocyanate (PhNCO) and methanol without and in the presence of catalysts have been studied and discussed using the G3MP2BHandHLYP composite method. The solvent effects have also been considered by applying the SMD implicit solvent model. A general urethane formation mechanism has been proposed without and in the presence of the studied catalysts. The proton affinities (PA) were also examined. The barrier height of the reaction significantly decreased (∆E0 > 100 kJ/mol) in the presence of the studied catalysts, which proves the important effect they have on urethane formation. The achieved results can be applied in catalyst design and development in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...