Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0291158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489299

RESUMO

Fluorescence-based assays provide sensitive and adaptable methods for point of care testing, environmental monitoring, studies of protein abundance and activity, and a wide variety of additional applications. Currently, their utility in remote and low-resource environments is limited by the need for technically complicated or expensive instruments to read out fluorescence signal. Here we describe the Genes in Space Fluorescence Viewer (GiS Viewer), a portable, durable viewer for rapid molecular assay readout that can be used to visualize fluorescence in the red and green ranges. The GiS Viewer can be used to visualize any assay run in standard PCR tubes and contains a heating element. Results are visible by eye or can be imaged with a smartphone or tablet for downstream quantification. We demonstrate the capabilities of the GiS Viewer using two case studies-detection of SARS-CoV-2 RNA using RT-LAMP and quantification of drug-induced changes in gene expression via qRT-PCR on Earth and aboard the International Space Station. We show that the GiS Viewer provides a reliable method to visualize fluorescence in space without the need to return samples to Earth and can further be used to assess the results of RT-LAMP and qRT-PCR assays on Earth.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Testes Imediatos , Técnicas de Amplificação de Ácido Nucleico/métodos , Bioensaio , Sensibilidade e Especificidade
2.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077056

RESUMO

Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.

3.
Hepatology ; 76(2): 372-386, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35006629

RESUMO

BACKGROUND AND AIMS: Hepatocyte nuclear factor 4 alpha (HNF4α) is indispensable for hepatocyte differentiation and critical for maintaining liver health. Here, we demonstrate that loss of HNF4α activity is a crucial step in the pathogenesis of chronic liver diseases (CLDs) that lead to development of HCC. APPROACH AND RESULTS: We developed an HNF4α target gene signature, which can accurately determine HNF4α activity, and performed an exhaustive in silico analysis using hierarchical and K-means clustering, survival, and rank-order analysis of 30 independent data sets containing over 3500 individual samples. The association of changes in HNF4α activity to CLD progression of various etiologies, including HCV- and HBV-induced liver cirrhosis (LC), NAFLD/NASH, and HCC, was determined. Results revealed a step-wise reduction in HNF4α activity with each progressive stage of pathogenesis. Cluster analysis of LC gene expression data sets using the HNF4α signature showed that loss of HNF4α activity was associated with progression of Child-Pugh class, faster decompensation, incidence of HCC, and lower survival with and without HCC. A moderate decrease in HNF4α activity was observed in NAFLD from normal liver, but a further significant decline was observed in patients from NAFLD to NASH. In HCC, loss of HNF4α activity was associated with advanced disease, increased inflammatory changes, portal vein thrombosis, and substantially lower survival. CONCLUSIONS: In conclusion, these data indicate that loss of HNF4α function is a common event in the pathogenesis of CLDs leading to HCC and is important from both diagnostic and therapeutic standpoints.


Assuntos
Carcinoma Hepatocelular , Fator 4 Nuclear de Hepatócito , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
4.
ACS Chem Biol ; 16(9): 1770-1778, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34427427

RESUMO

The utility of in vitro human disease models is mainly dependent on the availability and functional maturity of tissue-specific cell types. We have previously screened for and identified small molecules that can enhance hepatocyte function in vitro. Here, we characterize the functional effects of one of the hits, FH1, on primary human hepatocytes in vitro, and also in vivo on primary hepatocytes in a zebrafish model. Furthermore, we conducted an analogue screen to establish the structure-activity relationship of FH1. We performed affinity-purification proteomics that identified NQO2 to be a potential binding target for this small molecule, revealing a possible link between inflammatory signaling and hepatocellular function in zebrafish and human hepatocyte model systems.


Assuntos
Biomarcadores/metabolismo , Inibidores Enzimáticos/química , Hepatócitos/metabolismo , Quinona Redutases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Interleucina-6/genética , Fígado , Simulação de Acoplamento Molecular , Ligação Proteica , Fator de Transcrição STAT3/genética , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Necrose Tumoral/genética , Peixe-Zebra
5.
Nat Commun ; 11(1): 5785, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214549

RESUMO

The liver plays a central role in metabolism, protein synthesis and detoxification. It possesses unique regenerative capacity upon injury. While many factors regulating cellular proliferation during liver repair have been identified, the mechanisms by which the injured liver maintains vital functions prior to tissue recovery are unknown. Here, we identify a new phase of functional compensation following acute liver injury that occurs prior to cellular proliferation. By coupling single-cell RNA-seq with in situ transcriptional analyses in two independent murine liver injury models, we discover adaptive reprogramming to ensure expression of both injury response and core liver function genes dependent on macrophage-derived WNT/ß-catenin signaling. Interestingly, transcriptional compensation is most prominent in non-proliferating cells, clearly delineating two temporally distinct phases of liver recovery. Overall, our work describes a mechanism by which the liver maintains essential physiological functions prior to cellular reconstitution and characterizes macrophage-derived WNT signals required for this compensation.


Assuntos
Regeneração Hepática/fisiologia , Fígado/lesões , Fígado/fisiologia , Acetaminofen/toxicidade , Animais , Ciclo Celular , Proliferação de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hepatectomia/efeitos adversos , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Fígado/patologia , Regeneração Hepática/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
6.
Toxicol Sci ; 162(2): 599-610, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325178

RESUMO

Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single ß-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.


Assuntos
Acetaminofen/toxicidade , Acetilglucosamina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/biossíntese , Fígado/efeitos dos fármacos , N-Acetilglucosaminiltransferases/metabolismo , Acetaminofen/metabolismo , Acilação , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Glutationa/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Ligação Proteica
8.
Hepatology ; 64(3): 717-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349921
9.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G91-G104, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151938

RESUMO

Hepatocellular carcinoma (HCC) is the most common hepatic malignancy and the third leading cause of cancer related deaths. Previous studies have implicated bile acids in pathogenesis of HCC, but the mechanisms are not known. We investigated the mechanisms of HCC tumor promotion by bile acids the diethylnitrosamine (DEN)-initiation-cholic acid (CA)-induced tumor promotion protocol in mice. The data show that 0.2% CA treatment resulted in threefold increase in number and size of DEN-induced liver tumors. All tumors observed in DEN-treated mice were well-differentiated HCCs. The HCCs observed in DEN-treated CA-fed mice exhibited extensive CD3-, CD20-, and CD45-positive inflammatory cell aggregates. Microarray-based global gene expression studies combined with Ingenuity Pathway Analysis revealed significant activation of NF-κB and Nanog in the DEN-treated 0.2% CA-fed livers. Further studies showed significantly higher TNF-α and IL-1ß mRNA, a marked increase in total and phosphorylated-p65 and phosphorylated IκBα (degradation form) in livers of DEN-treated 0.2% CA-fed mice. Treatment of primary mouse hepatocytes with various bile acids showed significant induction of stemness genes including Nanog, KLF4, Sox2, and Oct4. Quantification of total and 20 specific bile acids in liver, and serum revealed a tumor-associated bile acid signature. Finally, quantification of total serum bile acids in normal, cirrhotic, and HCC human samples revealed increased bile acids in serum of cirrhotic and HCC patients. Taken together, these data indicate that bile acids are mechanistically involved pathogenesis of HCC and may promote HCC formation via activation of inflammatory signaling.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Transformação Celular Neoplásica/induzido quimicamente , Ácido Cólico/toxicidade , Dietilnitrosamina , Mediadores da Inflamação/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Adulto , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Ácido Cólico/sangue , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Adulto Jovem
12.
Genom Data ; 5: 126-128, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26120557

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) is known as the master regulator of hepatic differentiation, which regulates over 60% of the hepatocyte specific genes. Recent studies including this (Walesky et al. Am J Physiol Gastrointest Liver Physiol. 304:G26-37, 2013) demonstrated that HNF4α also inhibits hepatocyte proliferation via repression of pro-mitogenic genes. In this study hepatocyte specific HNF4α knockout mice were generated using 2-3 month old HNF4α-floxed mice treated with Cre recombinase under Major Urinary Protein promoter delivered in AAV8 vector (MUP-iCre-AAV8). Control mice were treated with MUP-EGFP-AAV8. Livers were isolated from control and KO mice one week after AAV8 administration and used for gene array analysis. These data revealed several new negative target genes of HNF4α, majority of which are pro-mitogeneic genes inhibited by HNF4α in adult hepatocytes.

13.
Gene Expr ; 16(3): 101-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700366

RESUMO

Hepatocyte nuclear factor 4α (HNF4α) is an orphan nuclear receptor commonly known as the master regulator of hepatic differentiation, owing to the large number of hepatocyte-specific genes it regulates. Whereas the role of HNF4α in hepatocyte differentiation is well recognized and extensively studied, its role in regulation of cell proliferation is relatively less known. Recent studies have revealed that HNF4α inhibits proliferation not only of hepatocytes but also cells in colon and kidney. Further, a growing number of studies have demonstrated that inhibition or loss of HNF4α promotes tumorigenesis in the liver and colon, and reexpression of HNF4α results in decreased cancer growth. Studies using tissue-specific conditional knockout mice, knock-in studies, and combinatorial bioinformatics of RNA/ChIP-sequencing data indicate that the mechanisms of HNF4α-mediated inhibition of cell proliferation are multifold, involving epigenetic repression of promitogenic genes, significant cross talk with other cell cycle regulators including c-Myc and cyclin D1, and regulation of miRNAs. Furthermore, studies indicate that posttranslational modifications of HNF4α may change its activity and may be at the core of its dual role as a differentiation factor and repressor of proliferation. This review summarizes recent findings on the role of HNF4α in cell proliferation and highlights the newly understood function of this old receptor.


Assuntos
Proliferação de Células/genética , Fator 4 Nuclear de Hepatócito/genética , Neoplasias/genética , Antígeno Nuclear de Célula em Proliferação/genética , Animais , Diferenciação Celular/genética , Dietilnitrosamina , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
14.
Am J Pathol ; 184(11): 3013-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193591

RESUMO

Acetaminophen (APAP) overdose results in acute liver failure and has limited treatment options. Previous studies show that stimulating liver regeneration is critical for survival after APAP overdose, but the mechanisms remain unclear. In this study, we identified major signaling pathways involved in liver regeneration after APAP-induced acute liver injury using a novel incremental dose model. Liver injury and regeneration were studied in C57BL/6 mice treated with either 300 mg/kg (APAP300) or 600 mg/kg (APAP600) APAP. Mice treated with APAP300 developed extensive liver injury and robust liver regeneration. In contrast, APAP600-treated mice exhibited significant liver injury but substantial inhibition of liver regeneration, resulting in sustained injury and decreased survival. The inhibition of liver regeneration in the APAP600 group was associated with cell cycle arrest and decreased cyclin D1 expression. Several known regenerative pathways, including the IL-6/STAT-3 and epidermal growth factor receptor/c-Met/mitogen-activated protein kinase pathways, were activated, even at APAP600, where regeneration was inhibited. However, canonical Wnt/ß-catenin and NF-κB pathways were activated only in APAP300-treated mice, where liver regeneration was stimulated. Furthermore, overexpression of a stable form of ß-catenin, where serine 45 is mutated to aspartic acid, in mice resulted in improved liver regeneration after APAP overdose. Taken together, our incremental dose model has identified a differential role of several signaling pathways in liver regeneration after APAP overdose and highlighted canonical Wnt signaling as a potential target for regenerative therapies for APAP-induced acute liver failure.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Regeneração Hepática/fisiologia , Transdução de Sinais/fisiologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
15.
Nature ; 513(7516): 110-4, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25043045

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4α silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Diferenciação Celular/genética , Colangiocarcinoma/patologia , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Hepatócitos/patologia , Isocitrato Desidrogenase/genética , Proteínas Mutantes/metabolismo , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/enzimologia , Ductos Biliares Intra-Hepáticos/patologia , Divisão Celular/genética , Linhagem da Célula/genética , Colangiocarcinoma/enzimologia , Colangiocarcinoma/genética , Modelos Animais de Doenças , Feminino , Glutaratos/metabolismo , Fator 4 Nuclear de Hepatócito/biossíntese , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Mutação/genética , Metástase Neoplásica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco/patologia , Proteínas ras/genética , Proteínas ras/metabolismo
16.
Am J Pathol ; 183(5): 1518-1526, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24007882

RESUMO

Bile acids play a critical role in liver injury and regeneration, but their role in acetaminophen (APAP)-induced liver injury is not known. We tested the effect of bile acid modulation on APAP hepatotoxicity using C57BL/6 mice, which were fed a normal diet, a 2% cholestyramine (CSA)-containing diet for bile acid depletion, or a 0.2% cholic acid (CA)-containing diet for 1 week before treatment with 400 mg/kg APAP. CSA-mediated bile acid depletion resulted in significantly higher liver injury and delayed regeneration after APAP treatment. In contrast, 0.2% CA supplementation in the diet resulted in a moderate delay in progression of liver injury and significantly higher liver regeneration after APAP treatment. Either CSA-mediated bile acid depletion or CA supplementation did not affect hepatic CYP2E1 levels or glutathione depletion after APAP treatment. CSA-fed mice exhibited significantly higher activation of c-Jun N-terminal protein kinases and a significant decrease in intestinal fibroblast growth factor 15 mRNA after APAP treatment. In contrast, mice fed a 0.2% CA diet had significantly lower c-Jun N-terminal protein kinase activation and 12-fold higher fibroblast growth factor 15 mRNA in the intestines. Liver regeneration after APAP treatment was significantly faster in CA diet-fed mice after APAP administration secondary to rapid cyclin D1 induction. Taken together, these data indicate that bile acids play a critical role in both initiation and recovery of APAP-induced liver injury.


Assuntos
Acetaminofen/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Overdose de Drogas/patologia , Overdose de Drogas/fisiopatologia , Regeneração Hepática , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Resina de Colestiramina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Hepatology ; 57(6): 2480-90, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23315968

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α), the master regulator of hepatocyte differentiation, has been recently shown to inhibit hepatocyte proliferation by way of unknown mechanisms. We investigated the mechanisms of HNF4α-induced inhibition of hepatocyte proliferation using a novel tamoxifen (TAM)-inducible, hepatocyte-specific HNF4α knockdown mouse model. Hepatocyte-specific deletion of HNF4α in adult mice resulted in increased hepatocyte proliferation, with a significant increase in liver-to-body-weight ratio. We determined global gene expression changes using Illumina HiSeq-based RNA sequencing, which revealed that a significant number of up-regulated genes following deletion of HNF4α were associated with cancer pathogenesis, cell cycle control, and cell proliferation. The pathway analysis further revealed that c-Myc-regulated gene expression network was highly activated following HNF4α deletion. To determine whether deletion of HNF4α affects cancer pathogenesis, HNF4α knockdown was induced in mice treated with the known hepatic carcinogen diethylnitrosamine (DEN). Deletion of HNF4α significantly increased the number and size of DEN-induced hepatic tumors. Pathological analysis revealed that tumors in HNF4α-deleted mice were well-differentiated hepatocellular carcinoma (HCC) and mixed HCC-cholangiocarcinoma. Analysis of tumors and surrounding normal liver tissue in DEN-treated HNF4α knockout mice showed significant induction in c-Myc expression. Taken together, deletion of HNF4α in adult hepatocytes results in increased hepatocyte proliferation and promotion of DEN-induced hepatic tumors secondary to aberrant c-Myc activation.


Assuntos
Carcinoma Hepatocelular/etiologia , Fator 4 Nuclear de Hepatócito/fisiologia , Hepatócitos/fisiologia , Neoplasias Hepáticas Experimentais/etiologia , Animais , Proliferação de Células , Dietilnitrosamina , Progressão da Doença , Deleção de Genes , Perfilação da Expressão Gênica , Homeostase , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência de RNA , Tamoxifeno , Transcriptoma
18.
Am J Physiol Gastrointest Liver Physiol ; 304(1): G26-37, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23104559

RESUMO

Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Animais , Western Blotting , Eletrocromatografia Capilar , Ciclo Celular/fisiologia , Linhagem Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Dependovirus/genética , Citometria de Fluxo , Imunofluorescência , Deleção de Genes , Imuno-Histoquímica , Regeneração Hepática , Camundongos , Camundongos Knockout , Análise em Microsséries , Mitose/genética , Reação em Cadeia da Polimerase em Tempo Real
19.
Hepatology ; 56(6): 2344-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22730081

RESUMO

UNLABELLED: Farnesoid X receptor (FXR), the primary bile acid-sensing nuclear receptor, also plays a role in the stimulation of liver regeneration. Whole body deletion of FXR results in significant inhibition of liver regeneration after partial hepatectomy (PHX). FXR is expressed in the liver and intestines, and recent reports indicate that FXR regulates a distinct set of genes in a tissue-specific manner. These data raise a question about the relative contribution of hepatic and intestinal FXR in the regulation of liver regeneration. We studied liver regeneration after PHX in hepatocyte-specific FXR knockout (hepFXR-KO) mice over a time course of 0-14 days. Whereas the overall kinetics of liver regrowth in hepFXR-KO mice was unaffected, a delay in peak hepatocyte proliferation from day 2 to day 3 after PHX was observed in hepFXR-KO mice compared with Cre(-) control mice. Real-time polymerase chain reaction, western blot and co-immunoprecipitation studies revealed decreased cyclin D1 expression and decreased association of cyclin D1 with CDK4 in hepFXR-KO mice after PHX, correlating with decreased phosphorylation of the Rb protein and delayed cell proliferation in the hepFXR-KO livers. The hepFXR-KO mice also exhibited delay in acute hepatic fat accumulation following PHX, which is associated with regulation of cell cycle. Further, a significant delay in hepatocyte growth factor-initiated signaling, including the AKT, c-myc, and extracellular signal-regulated kinase 1/2 pathways, was observed in hepFXR-KO mice. Ultraperformance liquid chromatography/mass spectroscopy analysis of hepatic bile acids indicated no difference in levels of bile acids in hepFXR-KO and control mice. CONCLUSION: Deletion of hepatic FXR did not completely inhibit but delays liver regeneration after PHX secondary to delayed cyclin D1 activation.


Assuntos
Regeneração Hepática , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Expressão Gênica , Genes jun , Genes myc , Hepatectomia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Gordura Intra-Abdominal , Fígado/cirurgia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...