Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 54(3): 417-437, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32348667

RESUMO

BACKGROUND/AIMS: Obesity is associated with infertility, decreased ovarian performance and lipotoxicity. However, little is known about the aetiology of these reproductive impairments. Here, we hypothesise that the majority of changes in ovarian physiology in diet-induced obesity (DIO) are a consequence of transcriptional changes downstream of altered leptin signalling. Therefore, we investigated the extent to which leptin signalling is altered in the ovary upon obesity with particular emphasis on effects on cumulus cells (CCs), the intimate functional companions of the oocyte. Furthermore, we used the pharmacological hyperleptinemic (LEPT) mouse model to compare transcriptional profiles to DIO. METHODS: Mice were subjected to DIO for 4 and 16 weeks (wk) and leptin treatment for 16 days, to study effects in the ovary in components of leptin signalling at the transcript and protein levels, using Western blot, Real-time PCR and immunostaining. Furthermore, we used low-cell RNA sequencing to characterise changes in the transcriptome of CCs in these models. RESULTS: In the DIO model, obesity led to establishment of ovarian leptin resistance after 16 wk high fat diet (HFD), as evidenced by increases in the feedback regulator suppressor of cytokine signalling 3 (SOCS3) and decreases in the positive effectors phosphorylation of tyrosine 985 of leptin receptor (ObRb-pTyr985) and Janus kinase 2 (pJAK2). Transcriptome analysis of the CCs revealed a complex response to DIO, with large numbers and distinct sets of genes deregulated at early and late stages of obesity; in addition, there was a striking correlation between body weight and global transcriptome profile of CCs. Further analysis indicated that the transcriptome profile in 4 wk HFD CCs resembled that of LEPT CCs, in the upregulation of cellular trafficking and impairment in cytoskeleton organisation. Conversely, after 16 wk HFD CCs showed expression changes indicative of augmented inflammatory responses, cell morphogenesis, and decreased metabolism and transport, mainly as a consequence of the physiological changes of obesity. CONCLUSION: Obesity leads to ovarian leptin resistance and major time-dependent changes in gene expression in CCs, which in early obesity may be caused by increased leptin signalling in the ovary, whereas in late obesity are likely to be a consequence of metabolic changes taking place in the obese mother.


Assuntos
Células do Cúmulo/metabolismo , Leptina/farmacologia , Obesidade/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Janus Quinase 2/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Ovário/fisiologia , Fosforilação , RNA-Seq , Receptores para Leptina/metabolismo , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-31632347

RESUMO

The regulation of corpus luteus (CL) luteolysis is a complex process involving a myriad of factors. Previously, we have shown the involvement of Nodal in functional luteolysis in mares. Presently, we ask the extent of which Nodal mediation of luteolysis is done through regulation of angioregression. We demonstrated the interaction between Nodal and hypoxia-inducible factor 1 α (HIF1α) and thrombospondin 1/thrombospondin receptor (TSP1/CD36) systems, could mediate angioregression during luteolysis. First, we demonstrated the inhibitory effect of Nodal on the vascular marker platelet/endothelial cell adhesion molecule 1 (CD31). Also, treatment of mid CL explants with vascular endothelial growth factor A (VEGFA) showed a trend on activin-like kinase 7 (Alk7) protein inhibition. Next, Nodal was also shown to activate HIF1α and in vitro culture of mid CL explants under decreased oxygen level promoted Nodal expression and SMAD family member 3 (Smad3) phosphorylation. In another experiment, the crosstalk between Nodal and TSP1/CD36 was investigated. Indeed, Nodal increased the expression of the anti-angiogenic TSP1 and its receptor CD36 in mid CL explants. Finally, the supportive effect of prostaglandin F2α (PGF2α) on TSP1/CD36 was blocked by SB431542 (SB), a pharmacological inhibitor of Nodal signaling. Thus, we evidenced for the first time the in vitro interaction between Nodal and both HIF1α and TSP1 systems, two conserved pathways previously shown to be involved in vascular regression during luteolysis. Considering the given increased expression of Nodal in mid CL and its role on functional luteolysis, the current results suggest the additional involvement of Nodal in angioregression during luteolysis in the mare, particularly in the activation of HIF1α and TSP1/CD36.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...