Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2400661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373292

RESUMO

User authentication is a critical aspect of any information exchange system which verifies the identities of individuals seeking access to sensitive information. Conventionally, this approachrelies on establishing robust digital signature protocols which employ asymmetric encryption techniques involving a key pair consisting of a public key and its matching private key. In this article, a user verification platform constructed using integrated circuits (ICs) with atomically thin two-dimensional (2D) monolayer molybdenum disulfide (MoS2) memtransistors is presented. First, generation of secure cryptographic keys is demonstrated by exploiting the inherent stochasticity of carrier trapping and detrapping at the 2D/oxide interface trap sites. Subsequently, the ability to manipulate the functionality of logical NOR is leveraged to create a secure one-way hash function which when homomorphically operated upon with NAND, XOR, OR, NOT, and AND logic circuits generate distinct digital signatures. These signatures when subsequently decrypted, verify the authenticity of the receiver while ensuring complete preservation of data integrity and confidentiality as the underlying information is never revealed. Finally, the advantages of implementing a NOR-based hashing techniques in comparison to the conventional XOR-based encryption method are established. This demonstration highlights the potential of 2D-based ICs in developing critical hardware information security primitives.

2.
Nat Commun ; 14(1): 6021, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758750

RESUMO

Animal behavior involves complex interactions between physiology and psychology. However, most AI systems neglect psychological factors in decision-making due to a limited understanding of the physiological-psychological connection at the neuronal level. Recent advancements in brain imaging and genetics have uncovered specific neural circuits that regulate behaviors like feeding. By developing neuro-mimetic circuits that incorporate both physiology and psychology, a new emotional-AI paradigm can be established that bridges the gap between humans and machines. This study presents a bio-inspired gustatory circuit that mimics adaptive feeding behavior in humans, considering both physiological states (hunger) and psychological states (appetite). Graphene-based chemitransistors serve as artificial gustatory taste receptors, forming an electronic tongue, while 1L-MoS2 memtransistors construct an electronic-gustatory-cortex comprising a hunger neuron, appetite neuron, and feeding circuit. This work proposes a novel paradigm for emotional neuromorphic systems with broad implications for human health. The concept of gustatory emotional intelligence can extend to other sensory systems, benefiting future humanoid AI.


Assuntos
Comportamento Alimentar , Paladar , Animais , Humanos , Paladar/fisiologia , Comportamento Alimentar/fisiologia , Apetite , Comportamento Animal , Fome/fisiologia
3.
ACS Nano ; 17(17): 16817-16826, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37616285

RESUMO

A true random number generator (TRNG) is essential to ensure information security for Internet of Things (IoT) edge devices. While pseudorandom number generators (PRNGs) have been instrumental, their deterministic nature limits their application in security-sensitive scenarios. In contrast, hardware-based TRNGs derived from physically unpredictable processes offer greater reliability. This study demonstrates a peripheral-free TRNG utilizing two cascaded three-stage inverters (TSIs) in conjunction with an XOR gate composed of monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) by exploiting the stochastic charge trapping and detrapping phenomena at and/or near the MoS2/dielectric interface. The entropy source passes the NIST SP800-90B tests with a minimum normalized entropy of 0.8780, while the generated bits pass the NIST SP800-22 randomness tests without any postprocessing. Moreover, the keys generated using these random bits are uncorrelated with near-ideal entropy, bit uniformity, and Hamming distances, exhibiting resilience against machine learning (ML) attacks, temperature variations, and supply bias fluctuations with a frugal energy expenditure of 30 pJ/bit. This approach offers an advantageous alternative to conventional silicon, memristive, and nanomaterial-based TRNGs as it obviates the need for extensive peripherals while harnessing the potential of atomically thin 2D materials in developing low-power TRNGs.

4.
Nanoscale Horiz ; 8(5): 603-615, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37021644

RESUMO

Hardware Trojans (HTs) have emerged as a major security threat for integrated circuits (ICs) owing to the involvement of untrustworthy actors in the globally distributed semiconductor supply chain. HTs are intentional malicious modifications, which remain undetectable through simple electrical measurements but can cause catastrophic failure in the functioning of ICs in mission critical applications. In this article, we show how two-dimensional (2D) material based in-memory computing elements such as memtransistors can be used as hardware Trojans. We found that logic gates based on 2D memtransistors can be made to malfunction by exploiting their inherent programming capabilities. While we use 2D memtransistor-based ICs as the testbed for our demonstration, the results are equally applicable to any state-of-the-art and emerging in-memory computing technologies.

5.
Adv Mater ; 35(18): e2205365, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36564174

RESUMO

Hardware security is a major concern for the entire semiconductor ecosystem that accounts for billions of dollars in annual losses. Similarly, information security is a critical need for the rapidly proliferating edge devices that continuously collect and communicate a massive volume of data. While silicon-based complementary metal-oxide-semiconductor technology offers security solutions, these are largely inadequate, inefficient, and often inconclusive, as well as resource intensive in time, energy, and cost, leading to tremendous room for innovation in this field. Furthermore, silicon-based security primitives have shown vulnerability to machine learning (ML) attacks. In recent years, 2D materials such as graphene and transition metal dichalcogenides have been intensely explored to mitigate these security challenges. In this review, 2D-materials-based hardware security solutions such as camouflaging, true random number generation, watermarking, anticounterfeiting, physically unclonable functions, and logic locking of integrated circuits (ICs) are summarized with accompanying discussion on their reliability and resilience to ML attacks. In addition, the role of native defects in 2D materials in developing high entropy hardware security primitives is also examined. Finally, the existing challenges for 2D materials, which must be overcome for large-scale deployment of 2D ICs to meet the security needs of the semiconductor industry, are discussed.

6.
ACS Nano ; 15(11): 17804-17812, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34665596

RESUMO

A true random number generator (TRNG) is a critical hardware component that has become increasingly important in the era of Internet of Things (IoT) and mobile computing for ensuring secure communication and authentication schemes. While recent years have seen an upsurge in TRNGs based on nanoscale materials and devices, their resilience against machine learning (ML) attacks remains unexamined. In this article, we demonstrate a ML attack resilient, low-power, and low-cost TRNG by exploiting stochastic programmability of floating gate (FG) field effect transistors (FETs) with atomically thin channel materials. The origin of stochasticity is attributed to the probabilistic nature of charge trapping and detrapping phenomena in the FG. Our TRNG also satisfies other requirements, which include high entropy, uniformity, uniqueness, and unclonability. Furthermore, the generated bit-streams pass NIST randomness tests without any postprocessing. Our findings are important in the context of hardware security for resource constrained IoT edge devices, which are becoming increasingly vulnerable to ML attacks.

7.
ACS Nano ; 15(2): 3453-3467, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33507060

RESUMO

Reverse engineering (RE) is one of the major security threats to the semiconductor industry due to the involvement of untrustworthy parties in an increasingly globalized chip manufacturing supply chain. RE efforts have already been successful in extracting device level functionalities from an integrated circuit (IC) with very limited resources. Camouflaging is an obfuscation method that can thwart such RE. Existing work on IC camouflaging primarily involves transformable interconnects and/or covert gates where variation in doping and dummy contacts hide the circuit structure or build cells that look alike but have different functionalities. Emerging solutions, such as polymorphic gates based on a giant spin Hall effect and Si nanowire field effect transistors (FETs), are also promising but add significant area overhead and are successfully decamouflaged by the satisfiability solver (SAT)-based RE techniques. Here, we harness the properties of two-dimensional (2D) transition-metal dichalcogenides (TMDs) including MoS2, MoSe2, MoTe2, WS2, and WSe2 and their optically transparent transition-metal oxides (TMOs) to demonstrate area efficient camouflaging solutions that are resilient to SAT attack and automatic test pattern generation attacks. We show that resistors with resistance values differing by 5 orders of magnitude, diodes with variable turn-on voltages and reverse saturation currents, and FETs with adjustable conduction type, threshold voltages, and switching characteristics can be optically camouflaged to look exactly similar by engineering TMO/TMD heterostructures, allowing hardware obfuscation of both digital and analog circuits. Since this 2D heterostructure devices family is intrinsically camouflaged, NAND/NOR/AND/OR gates in the circuit can be obfuscated with significantly less area overhead, allowing 100% logic obfuscation compared to only 5% for complementary metal oxide semiconductor (CMOS)-based camouflaging. Finally, we demonstrate that the largest benchmarking circuit from ISCAS'85, comprised of more than 4000 logic gates when obfuscated with the CMOS-based technique, is successfully decamouflaged by SAT attack in <40 min; whereas, it renders to be invulnerable even in more than 10 h when camouflaged with 2D heterostructure devices, thereby corroborating our hypothesis of high resilience against RE. Our approach of connecting material properties to innovative devices to secure circuits can be considered as a one of a kind demonstration, highlighting the benefits of cross-layer optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...