Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 95(4): e28751, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185833

RESUMO

In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Síndrome da Liberação de Citocina , Interleucina-1
2.
J Infect Public Health ; 15(10): 1142-1146, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36155853

RESUMO

BACKGROUND: Linezolid (Oxazolidinones) is commonly used against a variety of Gram-positive infections, especially methicillin-resistant Staphylococcus aureus (MRSA). The emerging resistance to linezolid curtail the treatment of infections caused by MRSA and other Gram-positive bacteria. Presence of cfr gene plays a crucial role in Linezolid resistance. OBJECTIVE: Present study was aimed to detect cfr gene among clinical MRSA isolates. MATERIALS AND METHODS: The suspected Staphylococcus aureus isolates were processed through Kirby Bauer disc diffusion methods for the confirmation of MRSA strains. Phenotypic Linezolid resistance was determined through broth micro-dilution method. The plasmid and DNA of Linezolid resistant isolates were subjected to molecular characterization for the presence of cfr gene. RESULTS: Among 100 Staphylococcus aureus isolates, 85 of them were confirmed as MRSA isolates. Categorically, 65% MRSA isolates were sensitive to linezolid with MIC lower than 8 µg/ml, whereas, 35% of them were resistant to linezolid having MIC greater than 8 µg/ml. MIC level of 128 µg/ml was observed among 3.5% of the resistant isolates. Similarly, MIC level of 64 µg/ml, 32 µg/ml, 16 µg/ml and 8 µg/ml were noted for 3.5%, 4.7%, 8.2% and 15.3% isolates respectively. Linezolid resistance cfr gene was detected only in 9.4% of the resistant isolates. CONCLUSION: Multi drug resistance among MRSA isolates is keenly attributed to the presence of cfr gene as evident in the present study, and horizontal dissemination of cfr gene among MRSA strains is accredited to cfr-carrying transposons and plasmids.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Infecções Estafilocócicas , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Staphylococcus aureus/genética , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...