Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38733461

RESUMO

Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.

2.
Front Plant Sci ; 15: 1280846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584951

RESUMO

The world has undergone a remarkable transformation from the era of famines to an age of global food production that caters to an exponentially growing population. This transformation has been made possible by significant agricultural revolutions, marked by the intensification of agriculture through the infusion of mechanical, industrial, and economic inputs. However, this rapid advancement in agriculture has also brought about the proliferation of agricultural inputs such as pesticides, fertilizers, and irrigation, which have given rise to long-term environmental crises. Over the past two decades, we have witnessed a concerning plateau in crop production, the loss of arable land, and dramatic shifts in climatic conditions. These challenges have underscored the urgent need to protect our global commons, particularly the environment, through a participatory approach that involves countries worldwide, regardless of their developmental status. To achieve the goal of sustainability in agriculture, it is imperative to adopt multidisciplinary approaches that integrate fields such as biology, engineering, chemistry, economics, and community development. One noteworthy initiative in this regard is Zero Budget Natural Farming, which highlights the significance of leveraging the synergistic effects of both plant and animal products to enhance crop establishment, build soil fertility, and promote the proliferation of beneficial microorganisms. The ultimate aim is to create self-sustainable agro-ecosystems. This review advocates for the incorporation of biotechnological tools in natural farming to expedite the dynamism of such systems in an eco-friendly manner. By harnessing the power of biotechnology, we can increase the productivity of agro-ecology and generate abundant supplies of food, feed, fiber, and nutraceuticals to meet the needs of our ever-expanding global population.

3.
3 Biotech ; 12(6): 135, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35620568

RESUMO

Petrochemicals are important hydrocarbons, which are one of the major concerns when accidently escaped into the environment. On one hand, these cause soil and fresh water pollution on land due to their seepage and leakage from automobile and petrochemical industries. On the other hand, oil spills occur during the transport of crude oil or refined petroleum products in the oceans around the world. These hydrocarbon and petrochemical spills have not only posed a hazard to the environment and marine life, but also linked to numerous ailments like cancers and neural disorders. Therefore, it is very important to remove or degrade these pollutants before their hazardous effects deteriorate the environment. There are varieties of mechanical and chemical methods for removing hydrocarbons from polluted areas, but they are all ineffective and expensive. Bioremediation techniques provide an economical and eco-friendly mechanism for removing petrochemical and hydrocarbon residues from the affected sites. Bioremediation refers to the complete mineralization or transformation of complex organic pollutants into the simplest compounds by biological agents such as bacteria, fungi, etc. Many indigenous microbes present in nature are capable of detoxification of various hydrocarbons and their contaminants. This review presents an updated overview of recent advancements in various technologies used in the degradation and bioremediation of petroleum hydrocarbons, providing useful insights to manage such problems in an eco-friendly manner.

4.
3 Biotech ; 11(10): 428, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34513551

RESUMO

Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of 'omics' era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.

5.
Braz. j. microbiol ; 48(2): 294-304, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839377

RESUMO

Abstract Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L), nitrogen fixation (202.91 nmol ethylene mL-1 h-1), indole-3-acetic acid (IAA) (8.1 µg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Valeriana/microbiologia , Fosfatos de Cálcio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Bacillales/isolamento & purificação , Fixação de Nitrogênio , Microbiologia do Solo , Cromatografia Líquida de Alta Pressão , Solanum lycopersicum/microbiologia , Raízes de Plantas/microbiologia , Biomassa , Bacillales/metabolismo , Rizosfera , Fungos/crescimento & desenvolvimento , Antibiose
6.
3 Biotech ; 7(1): 11, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28391477

RESUMO

Xylanases are hydrolytic enzymes which cleave the ß-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution.

7.
Braz J Microbiol ; 48(2): 294-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28063921

RESUMO

Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL-1h-1), indole-3-acetic acid (IAA) (8.1µg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.


Assuntos
Bacillales/isolamento & purificação , Fosfatos de Cálcio/metabolismo , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Valeriana/microbiologia , Antibiose , Bacillales/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Fungos/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo
8.
Int J Food Microbiol ; 232: 134-43, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294522

RESUMO

An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/metabolismo , Endopeptidases/metabolismo , Fusarium/crescimento & desenvolvimento , Sequência de Aminoácidos , Bacillus amyloliquefaciens/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Inibidores de Proteases/farmacologia , Análise de Sequência de DNA , Subtilisinas/genética
9.
J Basic Microbiol ; 56(2): 138-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26375163

RESUMO

A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 µg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Detergentes/metabolismo , Endopeptidases/isolamento & purificação , Endopeptidases/metabolismo , Rizosfera , Microbiologia do Solo , Proteínas de Bactérias/química , Endopeptidases/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Malus/microbiologia , Peso Molecular , Desenvolvimento Vegetal , Temperatura
10.
3 Biotech ; 6(2): 208, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330279

RESUMO

An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 °C, pH 8.0 for 5 min) was 3580 µg/ml/min. The results of immobilization with various matrices revealed that 3 % calcium alginate (2829.92 µg/ml/min), 2 % agar (2600 µg/ml/min) and 10 % polyacrylamide (5698.99 µg/ml/min) were optimum concentrations for stable bead formation. Immobilized enzyme reusability results indicated that calcium alginate, agar and polyacrylamide beads retained 25.63, 22.05 and 34.04 % activity in their fifth repeated cycle, respectively. In cell immobilization technique, the free movement of microorganisms is restricted in the process, and a semi-continuous system of fermentation can be used. In the present work, this technique has been used for alkaline protease production using different matrices. Polyacrylamide (10 %) was found with the highest total alkaline protease titer, i.e., 24,847 µg/ml/min semi-continuously for 18 days as compared to agar (total enzyme titer: 5800 in 10 days) and calcium alginate (total enzyme titer: 13,010 in 15 days). This present study reported that polyacrylamide (10 %) among different matrices has maximum potential of immobilization of B. amyloliquefaciens SP1 and its detergent stable alkaline protease with effective application in bloodstain removal.

11.
Braz. arch. biol. technol ; 58(6): 913-922, Nov.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-766962

RESUMO

ABSTRACT A xylanolytic bacterium was isolated from mushroom compost by using enrichment technique. Results from the metabolic fingerprinting, whole-cell fatty acids methyl ester analysis and 16S rDNA sequencing suggested the bacterium to be Cellulosimicrobium cellulans CKMX1. Due to the xylanolytic activity of this bacterium, isolation and characterization of the xylanase gene were attempted. A distinct fragment of about 1671 bp was successfully amplified using PCR and cloned into Escherichia coli DH5α. A BLAST search confirmed that the DNA sequence from the amplified fragment was endo-1, 4-beta-xylanase, which was a member of glycoside hydrolase family 11. It showed 98% homology withCellulosimicrobium sp. xylanase gene (Accession no. FJ859907.1) reported from the gut of Eisenia fetida in Korea. In silicophysico-chemical characterization of amino acid sequence of xylanase showed an open reading frame encoding a 556 amino acid sequence with a molecular weight of 58 kDa and theoretical isolectric point (pI) of 4.46 was computed using Expasy's ProtParam server. Secondary and homology based 3D structure of xylanase was analysed using SOPMA and Swiss-Prot software.

12.
Can J Microbiol ; 61(9): 671-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220821

RESUMO

Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.


Assuntos
Actinomycetales/enzimologia , Endo-1,4-beta-Xilanases/química , Triticum/química , Actinomycetales/química , Actinomycetales/metabolismo , Celulase/química , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Lignina/química , Papel , Caules de Planta/química , Temperatura
13.
3 Biotech ; 5(6): 1053-1066, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28324413

RESUMO

The effects of yeast extract (X1), NH4NO3 (X2), peptone (X3), urea (X4), CMC (X5), Tween 20 (X6), MgSO4 (X7), and CaCO3 (X8) on production of xylanase from Cellulosimicrobium cellulans CKMX1 were optimized by statistical analysis using response surface methodology (RSM). The RSM was used to optimize xylanase production by implementing the Central composite design. Statistical analysis of the results showed that the linear, interaction and quadric terms of these variables had significant effects. However, only the linear effect of X4, X5, interaction effect of X1X7, X1X8, X2X3, X2X8, X3X6, X3X8, X4X6, X4X7, X5X7, X5X8 and quadratic effect of X 32 , X 52 and X 72 found to be insignificant terms in the quadratic model and had no response at significant level. The minimum and maximum xylanase production obtained was 331.50 U/g DBP and 1027.65 U/g DBP, respectively. The highest xylanase activity was obtained from Run No. 30, which consisted of yeast extract (X1), 1.00 g (%); NH4NO3 (X2), 0.20 g (%); peptone (X3), 1.00 g (%); urea (X4), 10 mg (%); CMC (X5), 1.00 g (%); Tween 20 (X6), 0.02 mL (%); CaCO3 (X7), 0.50 g (%) and MgSO4 (X8), 9.0 g (%). The optimization resulted in 3.1-fold increase of xylanase production, compared with the lowest xylanase production of 331.50 U/g DBP after 72 h of incubation in stationary flask experiment. Application of cellulase-free xylanase in pulp biobleaching from C. cellulans CKMX1 under C-EP-D sequence has been shown to bring about a 12.5 % reduction of chlorine, decrease of 0.8 kappa points (40 %), and gain in brightness was 1.42 % ISO points in 0.5 % enzyme treated pulp as compared to control.

14.
J Basic Microbiol ; 55(1): 33-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24464353

RESUMO

P-solubilizing bacterial isolate CB7 isolated from apple rhizosphere soil of Himachal Pradesh, India was identified as Bacillus circulans on the basis of phenotypic characteristics, biochemical tests, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The isolate exhibited plant growth-promoting traits of P-solubilization, auxin, 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore, nitrogenase activity, and antagonistic activity against Dematophora necatrix. In vitro studies revealed that P-solubilization and other plant growth-promoting traits were dependent on the presence of glucose in PVK medium and removal of yeast extract had no significant effect on plant growth-promoting traits. Plant growth-promoting traits of isolate CB7 were repressed in the presence of KH2 PO4 . P-solubilization activity was associated with the release of organic acids and a drop in the pH of the Pikovskaya's medium. HPLC analysis detected gluconic and citric acid as major organic acids in the course of P-solubilization. Remarkable increase was observed in seed germination (22.32%), shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root dry weight (31.4%), nitrogen (18.75%), potassium (57.69%), and phosphorus (22.22%) content of shoot biomass over control. These results demonstrate that isolate CB7 has the promising PGPR attributes to be developed as a biofertilizer to enhance soil fertility and promote plant growth.


Assuntos
Bacillus/isolamento & purificação , Bacillus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Bacillus/química , Bacillus/genética , Carbono-Carbono Liases/metabolismo , Meios de Cultura , Índia , Ácidos Indolacéticos/metabolismo , Nitrogenase/metabolismo , Fosfatos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Sideróforos/metabolismo , Microbiologia do Solo
15.
ScientificWorldJournal ; 2014: 702909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478598

RESUMO

The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0-2000 ppm) at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8) collected from apple orchards of Shimla in Himachal Pradesh (India). Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm) were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required.


Assuntos
Fungos/efeitos dos fármacos , Maneb/farmacologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Zineb/farmacologia , Bactérias/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Índia , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo
16.
World J Microbiol Biotechnol ; 30(10): 2597-608, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24908422

RESUMO

Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is first report on actinomycetes that has the ability to produce thermostable cellulase-free xylanase, which is an important industrial enzyme used in the pulp and paper industry. Strain CKMX1 was characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis and 16Sr DNA and found to be C. cellulans CKMX1.The enzyme was purified by gel permeation and anion exchange chromatography and had a molecular mass of 29 kDa. Xylanase activity was optimum at pH 8.0 and 55 °C. The enzyme was somewhat thermostable, retaining 50 % of the original activity after incubation at 50 °C for 30 min. The xylanase had K m and V max values of 2.64 mg/ml and 2,000 µmol/min/mg protein in oat spelt xylan, respectively. All metal ions except HgCl2, CoCl2 as well as CdCl2 were well tolerated and did not adversely affect xylanase activity. The deduced internal amino acid sequence of C. cellulans CKMX1 xylanase by matrix assisted laser desorption ionization-time of flight mass spectrometry resembled the sequence of ß-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation could be useful for pulp and paper biobleaching are discussed in this manuscript.


Assuntos
Actinomycetales/isolamento & purificação , Endo-1,4-beta-Xilanases/isolamento & purificação , Microbiologia do Solo , Actinomycetales/classificação , Actinomycetales/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Peso Molecular , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de DNA , Xilanos/metabolismo
17.
Arch Microbiol ; 195(5): 357-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503555

RESUMO

Two hundred and six phosphate-solubilizing rhizobacteria (PSB) were isolated from rhizosphere soil (RS) and root endosphere (ER) of apple trees from different sites of four locations viz., Chamba, Shimla, Kinnaur and Kullu of Himachal Pradesh, Northern India, and were screened for plant growth promoting traits (PGPTs) by using culture dependent procedures. Indole acetic acid (IAA) production was detected in 50 isolates (24.2 %), siderophore synthesis in 53 isolates (25.7 %), hydrocyanic acid (HCN) in 40 isolates (19.4 %) and percentage growth inhibition against Dematophora necatrix in 61 isolates (29.6 %). Overall, 54.3 % of PSB isolates from RS and 64.4 % from ER showed none of the PGPTs tested. Among the PSB showing PGPTs, 10.6 % had single trait and 30.6 % had multiple traits showing two (10.7 %), three (14.1 %) and four (5.8 %) types of PGPTs. The Shannon-Weaver diversity index (H') revealed that PGPT-possessing PSBs in RS were more abundant than ER. Clustering analysis by principal component analysis showed that ER was most important factor influencing the ecological distribution and physiological characterization of PGPT-possessing PSB. There was a positive correlation (0.94, p < 0.05) between HCN and antifungal activity producers, and IAA and antifungal activity producers (0.99, p < 0.05). Significant positive correlation (0.42, p < 0.05) between HCN producers and altitude was also noted.


Assuntos
Ácidos Indolacéticos/metabolismo , Malus/crescimento & desenvolvimento , Malus/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Rhizobium/isolamento & purificação , Microbiologia do Solo , Clima , Análise por Conglomerados , Índia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/metabolismo , Rizosfera , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...