Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Microb Sci ; 6: 100213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187998

RESUMO

The skin microbiome of amphibians can influence host susceptibility towards the fungal pathogen Batrachochytrium dendrobatidis (Bd), while simultaneously having the potential to be altered by Bd. Severe Bd infections are known to alter the amphibian skin microbiome; however, little is known about microbiome interactions in amphibians with low infection intensity. In addition to disease dynamics, environmental factors may influence the microbiome. To test for patterns in bacterial diversity based on pathogen infection and environmental factors, 399 Columbia spotted frogs (Rana luteiventris) were sampled throughout northern Idaho and northeastern Washington across two years. Bd prevalence and intensity were measured in 376 frogs, revealing a prevalence of 69%, but generally low infection intensity (Mean = 127 Bd zoospore equivalents among infected frogs). Skin bacterial communities were characterized in 92 frogs using 16S rRNA gene amplicon sequencing. Our results indicated correlations of decreasing Shannon diversity and evenness as infection intensity increased. Latitude was correlated with bacterial richness and Faith's Phylogenetic Diversity measures, indicating increased diversity in northern locations. Beta diversity (UniFrac) analyses revealed that skin microbiomes were distinct between infected and uninfected frogs, and infection intensity had a significant effect on microbiome composition. Site explained the majority of microbiome variation (weighted UniFrac: 57.5%), suggesting a combination of local habitat conditions explain variation, as only small proportions of variation could be explained by year, month, temperature, elevation, and latitude individually. Bacterial genera with potential for Bd-inhibitory properties were found with differential relative abundance in infected and uninfected frogs, with higher Stenotrophomonas and lower Pseudomonas relative abundance observed in infected frogs. Further study may indicate if Bd inhibition by members of the skin microbiome is an influence behind the low infection intensities observed and whether low Bd infection intensities are capable of altering skin microbiome composition.

2.
PeerJ ; 11: e15714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637170

RESUMO

Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is a skin disease associated with worldwide amphibian declines. Symbiotic microbes living on amphibian skin interact with Bd and may alter infection outcomes. We completed whole genome sequencing of 40 bacterial isolates cultured from the skin of four amphibian species in the Eastern US. Each isolate was tested in vitro for the ability to inhibit Bd growth. The aim of this study was to identify genomic differences among the isolates and generate hypotheses about the genomic underpinnings of Bd growth inhibition. We identified sixty-five gene families that were present in all 40 isolates. Screening for common biosynthetic gene clusters revealed that this set of isolates contained a wide variety of clusters; the two most abundant clusters with potential antifungal activity were siderophores (N=17 isolates) and Type III polyketide synthases (N=22 isolates). We then examined various subsets of the 22 isolates in the phylum Proteobacteria for genes encoding specific compounds that may inhibit fungal growth, including chitinase and violacein. We identified differences in Agrobacterium and Sphingomonas isolates in the chitinase genes that showed some association with anti-Bd activity, as well as variation in the violacein genes in the Janthinobacterium isolates. Using a comparative genomics approach, we generated several testable hypotheses about differences among bacterial isolates from amphibian skin communities that could contribute to variation in the ability to inhibit Bd growth. Further work is necessary to explore and uncover the various mechanisms utilized by amphibian skin bacterial isolates to inhibit Bd.


Assuntos
Batrachochytrium , Quitinases , Animais , Bactérias/genética , Genômica , Anfíbios
3.
Dev Comp Immunol ; 145: 104690, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37001710

RESUMO

The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.


Assuntos
Quitridiomicetos , Microbiota , Animais , Anfíbios , Pele , Mucosa
4.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331337

RESUMO

Lactobacillaceae are an important family of lactic acid bacteria that play key roles in the gut microbiome of many animal species. In the honey bee (Apis mellifera) gut microbiome, many species of Lactobacillaceae are found, and there is functionally important strain-level variation in the bacteria. In this study, we completed whole-genome sequencing of 3 unique Lactobacillaceae isolates collected from hives in Virginia, USA. Using 107 genomes of known bee-associated Lactobacillaceae and Limosilactobacillus reuteri as an outgroup, the phylogenetics of the 3 isolates was assessed, and these isolates were identified as novel strains of Apilactobacillus kunkeei, Lactobacillus kullabergensis, and Bombilactobacillus mellis. Genome rearrangements, conserved orthologous genes (COG) categories and potential prophage regions were identified across the 3 novel strains. The new A. kunkeei strain was enriched in genes related to replication, recombination and repair, the L. kullabergensis strain was enriched for carbohydrate transport, and the B. mellis strain was enriched in transcription or transcriptional regulation and in some genes with unknown functions. Prophage regions were identified in the A. kunkeei and L. kullabergensis isolates. These new bee-associated strains add to our growing knowledge of the honey bee gut microbiome, and to Lactobacillaceae genomics more broadly.


Assuntos
Microbioma Gastrointestinal , Lactobacillaceae , Abelhas/genética , Animais , Estados Unidos , Microbioma Gastrointestinal/genética , Bactérias/genética , Filogenia , Genômica
5.
Nat Microbiol ; 7(11): 1726-1735, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35864220

RESUMO

Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.


Assuntos
Conservação dos Recursos Naturais , Microbiota , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Animais Selvagens
6.
J Insect Sci ; 22(2)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303101

RESUMO

Laboratory experiments have advanced our understanding of honey bee (Apis mellifera) responses to environmental factors, but removal from the hive environment may also impact physiology. To examine whether the laboratory environment alters the honey bee gut bacterial community and immune responses, we compared bacterial community structure (based on amplicon sequence variant relative abundance), total bacterial abundance, and immune enzyme (phenoloxidase and glucose oxidase) activity of cohort honey bee workers kept under laboratory and hive conditions. Workers housed in the laboratory showed differences in the relative abundance of their core gut taxa, an increase in total gut bacterial abundance, and reduced phenoloxidase activity, compared to bees housed in hives.


Assuntos
Abelhas , Microbioma Gastrointestinal , Animais , Bactérias , Abelhas/imunologia , Abelhas/microbiologia , Imunidade
7.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33278302

RESUMO

Amphibians host diverse skin bacteria that have a role in pathogen defense, but these skin communities could change over time and impact this function. Here, we monitored individual Eastern red-spotted newts (Notophthalmus viridescens; N = 17) for 2 years in a field pond enclosure and assessed the effects of season and disturbance on skin bacterial community dynamics. We created disturbances by adding additional pond substrate to the enclosure at two timepoints. We planned to sample the skin bacterial community and metabolite profiles of each newt every 6 weeks; we ultimately sampled eight individuals at least six times. We used 16S rRNA gene amplicon sequencing to characterize the bacterial communities and HPLC-MS for metabolite profiling. We found that disturbance had a dramatic effect on skin bacterial communities and metabolite profiles, while season had an effect only using select metrics. There were seven core bacterial taxa (97% OTUs) that were found on all newts in all seasons, pre- and post-disturbance. Lastly, there was a correlation between bacterial and metabolite profiles post-disturbance, which was not observed pre-disturbance. This longitudinal study suggests that environmental disturbances can have lasting effects on skin bacterial communities that overwhelm seasonal changes, although the core bacteria remain relatively consistent over time.


Assuntos
Anfíbios , Bactérias , Animais , Bactérias/genética , Ecossistema , Humanos , Estudos Longitudinais , RNA Ribossômico 16S/genética , Estações do Ano , Pele
8.
PLoS One ; 15(2): e0228982, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32045456

RESUMO

Host-associated microbial communities can influence the overall health of their animal hosts, and many factors, including behavior and physiology, can impact the formation of these complex communities. Bacteria within these communities can be transmitted socially between individuals via indirect (e.g., shared environments) or direct (e.g., physical contact) pathways. Limited research has been done to investigate how social interactions that occur in the context of mating shape host-associated microbial communities. To gain a better understanding of these interactions and, more specifically, to assess how mating behavior shapes an animal's microbiome, we studied the cloacal bacterial communities of a socially monogamous yet genetically polygynous songbird, the North American tree swallow (Tachycineta bicolor). We address two questions: (1) do the cloacal bacterial communities differ between female and male tree swallows within a population? and (2) do pair-bonded social partners exhibit more similar cloacal bacterial communities than expected by chance? To answer these questions, we sampled the cloacal microbiome of adults during the breeding season and then used culture-independent, 16S rRNA gene amplicon sequencing to assess bacterial communities. Overall, we found that the cloacal bacterial communities of females and males were similar, and that the communities of pair-bonded social partners were not more similar than expected by chance. Our results suggest that social monogamy does not correlate with an increased similarity in cloacal bacterial community diversity or structure. As social partners were not assessed at the same time, it is possible that breeding stage differences masked social effects on bacterial community diversity and structure. Further, given that tree swallows exhibit high variation in rates of extra-pair activity, considering extra-pair activity when assessing cloacal microbial communities may be important for understanding how these bacterial communities are shaped. Further insight into how bacterial communities are shaped will ultimately shed light on potential tradeoffs associated with alternative behavioral strategies and socially-transmitted microbes.


Assuntos
Bactérias , Cloaca/microbiologia , Microbiota , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodução , Andorinhas/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Feminino , Masculino
9.
PeerJ ; 7: e7044, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275740

RESUMO

The amphibian skin microbiome has been the focus of recent studies aiming to better understand the role of these microbial symbionts in host defense against disease. However, host-associated microbial communities are complex and dynamic, and changes in their composition and structure can influence their function. Understanding temporal variation of bacterial communities on amphibian skin is critical for establishing baselines from which to improve the development of mitigation techniques based on probiotic therapy and provides long-term host protection in a changing environment. Here, we investigated whether microbial communities on amphibian skin change over time at a single site. To examine this, we collected skin swabs from two pond-breeding species of treefrogs, Agalychnis callidryas and Dendropsophus ebraccatus, over 4 years at a single lowland tropical pond in Panamá. Relative abundance of operational taxonomic units (OTUs) based on 16S rRNA gene amplicon sequencing was used to determine bacterial community diversity on the skin of both treefrog species. We found significant variation in bacterial community structure across long and short-term time scales. Skin bacterial communities differed across years on both species and between seasons and sampling days only in D. ebraccatus. Importantly, bacterial community structures across days were as variable as year level comparisons. The differences in bacterial community were driven primarily by differences in relative abundance of key OTUs and explained by rainfall at the time of sampling. These findings suggest that skin-associated microbiomes are highly variable across time, and that for tropical lowland sites, rainfall is a good predictor of variability. However, more research is necessary to elucidate the significance of temporal variation in bacterial skin communities and their maintenance for amphibian conservation efforts.

10.
Environ Microbiol ; 21(8): 2905-2920, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31087743

RESUMO

Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial-fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.


Assuntos
Anuros/microbiologia , Quitridiomicetos , Micobioma , Micoses/veterinária , Animais , Quitridiomicetos/genética , Fungos/classificação , Fungos/isolamento & purificação , Especificidade de Hospedeiro , Microbiota , Tipagem Molecular , Micoses/microbiologia , Pele/microbiologia , Simbiose
11.
Microb Ecol ; 78(4): 832-842, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30949751

RESUMO

Animals host a wide diversity of symbiotic microorganisms that contribute important functions to host health, and our knowledge of what drives variation in the composition of these complex communities continues to grow. Microbiome studies at larger spatial scales present opportunities to evaluate the contribution of large-scale factors to variation in the microbiome. We conducted a large-scale field study to assess variation in the bacterial symbiont communities on adult frog skin (Pseudacris crucifer), characterized using 16S rRNA gene amplicon sequencing. We found that skin bacterial communities on frogs were less diverse than, and structurally distinct from, the surrounding habitat. Frog skin was typically dominated by one of two bacterial OTUs: at western sites, a Proteobacteria dominated the community, whereas eastern sites were dominated by an Actinobacteria. Using a metacommunity framework, we then sought to identify factors explaining small- and large-scale variation in community structure-that is, among hosts within a pond, and among ponds spanning the study transect. We focused on the presence of a fungal skin pathogen, Batrachochytrium dendrobatidis (Bd) as one potential driver of variation. We found no direct link between skin bacterial community structure and Bd infection status of individual frog hosts. Differences in pond-level community structure, however, were explained by Bd infection prevalence. Importantly, Bd infection prevalence itself was correlated with numerous other environmental factors; thus, skin bacterial diversity may be influenced by a complex suite of extrinsic factors. Our findings indicate that large-scale factors and processes merit consideration when seeking to understand microbiome diversity.


Assuntos
Anuros/microbiologia , Bactérias/isolamento & purificação , Microbiota , Pele/microbiologia , Animais , Bactérias/classificação , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Virginia
12.
Nat Ecol Evol ; 3(3): 381-389, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778181

RESUMO

Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.


Assuntos
Anuros/microbiologia , Clima , Microbiota , Urodelos/microbiologia , Animais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Pele/microbiologia
13.
Front Microbiol ; 9: 466, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615997

RESUMO

Skin symbiotic bacteria on amphibians can play a role in protecting their host against pathogens. Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, Bd, has caused dramatic population declines and extinctions of amphibians worldwide. Anti-Bd bacteria from amphibian skin have been cultured, and skin bacterial communities have been described through 16S rRNA gene amplicon sequencing. Here, we present a shotgun metagenomic analysis of skin bacterial communities from a Neotropical frog, Craugastor fitzingeri. We sequenced the metagenome of six frogs from two different sites in Panamá: three frogs from Soberanía (Sob), a Bd-endemic site, and three frogs from Serranía del Sapo (Sapo), a Bd-naïve site. We described the taxonomic composition of skin microbiomes and found that Pseudomonas was a major component of these communities. We also identified that Sob communities were enriched in Actinobacteria while Sapo communities were enriched in Gammaproteobacteria. We described gene abundances within the main functional classes and found genes enriched either in Sapo or Sob. We then focused our study on five functional classes of genes: biosynthesis of secondary metabolites, metabolism of terpenoids and polyketides, membrane transport, cellular communication and antimicrobial drug resistance. These gene classes are potentially involved in bacterial communication, bacterial-host and bacterial-pathogen interactions among other functions. We found that C. fitzingeri metagenomes have a wide array of genes that code for secondary metabolites, including antibiotics and bacterial toxins, which may be involved in bacterial communication, but could also have a defensive role against pathogens. Several genes involved in bacterial communication and bacterial-host interactions, such as biofilm formation and bacterial secretion systems were found. We identified specific genes and pathways enriched at the different sites and determined that gene co-occurrence networks differed between sites. Our results suggest that skin microbiomes are composed of distinct bacterial taxa with a wide range of metabolic capabilities involved in bacterial defense and communication. Differences in taxonomic composition and pathway enrichments suggest that skin microbiomes from different sites have unique functional properties. This study strongly supports the need for shotgun metagenomic analyses to describe the functional capacities of skin microbiomes and to tease apart their role in host defense against pathogens.

14.
Front Microbiol ; 8: 1574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28883811

RESUMO

One current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which is associated with global amphibian population declines and extinctions. As there is evidence that some skin bacteria may inhibit growth of Bd and prevent infection in some cases, there is interest in using these bacteria as probiotic therapy for conservation of at-risk amphibians. In this study, we used skin swabs from American toads (Anaxyrus americanus) to: (1) assess the diversity and community structure of culturable amphibian skin bacteria grown on high and low nutrient culture media, (2) determine which culture media recover the highest proportion of the total skin bacterial community of individual toads relative to culture-independent data, and (3) assess whether the plated communities from the distinct media types vary in their ability to inhibit Bd growth in in-vitro assays. Overall, we found that culture media with low nutrient concentrations facilitated the growth of more diverse bacterial taxa and grew distinct communities relative to media with higher nutrient concentrations. Use of low nutrient media also resulted in culturing proportionally more of the bacterial diversity on individual toads relative to the overall community defined using culture-independent methods. However, while there were differences in diversity among media types, the variation among individual hosts was greater than variation among media types, suggesting that swabbing more individuals in a population is the best way to maximize culture collections, regardless of media type. Lastly, the function of the plated communities against Bd did not vary across culture media type or between high and low nutrient media. These results inform current efforts for developing a probiotic-based approach for amphibian conservation and help to ensure that culture collections are capturing the majority of the important diversity in these systems.

15.
Environ Microbiol ; 19(8): 3387-3397, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28677171

RESUMO

Some amphibian skin bacteria inhibit growth of a fungal amphibian pathogen, Batrachochytrium dendrobatidis (Bd), but it is unclear how dominant these anti-Bd bacteria are in skin communities. Using in vitro co-culture challenge assays, we quantified Bd inhibition by bacterial isolates collected from the skin of four amphibian species: bullfrogs, Eastern newts, spring peepers and American toads. The 16S rRNA sequences for each isolate were matched to culture-independent amplicon sequences from the same individuals to assess inhibitory function versus relative abundance. Dominant bacteria had higher Bd inhibition than rare bacteria in bullfrog and newt populations, in which Bd was prevalent (> 25%). Dominant and rare bacteria did not differ in Bd inhibition in spring peeper and toad populations, in which Bd was absent or at low prevalence (< 7%). In addition, over half of the relative abundance of cultured bacteria on bullfrogs and newts was comprised of inhibitory bacteria, while only 25% and 37% of the relative abundance was inhibitory on spring peepers and toads, respectively. These results suggest that the dominant members of the amphibian skin bacterial community may be functionally important in terms of disease-resistance, and that Bd prevalence and/or host species identity may impact the relative abundance and inhibitory properties of skin bacteria.


Assuntos
Antibiose/fisiologia , Anuros/microbiologia , Bactérias/classificação , Quitridiomicetos/crescimento & desenvolvimento , Pele/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Microbiota , RNA Ribossômico 16S/genética
16.
Microb Ecol ; 74(1): 227-238, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28105509

RESUMO

Both the structure and function of host-associated microbial communities are potentially impacted by environmental conditions, just as the outcomes of many free-living species interactions are context-dependent. Many amphibian populations have declined around the globe due to the fungal skin pathogen, Batrachochytrium dendrobatidis (Bd), but enivronmental conditions may influence disease dynamics. For instance, in Panamá, the most severe Bd outbreaks have occurred at high elevation sites. Some amphibian species harbor bacterial skin communities that can inhibit the growth of Bd, and therefore, there is interest in understanding whether environmental context could also alter these host-associated microbial communities in a way that might ultimately impact Bd dynamics. In a field survey in Panamá, we assessed skin bacterial communities (16S rRNA amplicon sequencing) and metabolite profiles (HPLC-UV/Vis) of Silverstoneia flotator from three high- and three low-elevation populations representing a range of environmental conditions. Across elevations, frogs had similar skin bacterial communities, although one lowland site appeared to differ. Interestingly, we found that bacterial richness decreased from west to east, coinciding with the direction of Bd spread through Panamá. Moreover, metabolite profiles suggested potential functional variation among frog populations and between elevations. While the frogs have similar bacterial community structure, the local environment might shape the metabolite profiles. Ultimately, host-associated community structure and function could be dependent on environmental conditions, which could ultimately influence host disease susceptibility across sites.


Assuntos
Anuros/microbiologia , Bactérias/metabolismo , Metaboloma , Pele/microbiologia , Animais , Quitridiomicetos/patogenicidade , Panamá , RNA Ribossômico 16S/genética
18.
Appl Environ Microbiol ; 82(12): 3493-3502, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27037118

RESUMO

UNLABELLED: Disruptions to the microbiome can impact host health as can exposure to environmental contaminants. However, few studies have addressed how environmental contaminants impact the microbiome. We explored this question for frogs that breed in wetlands contaminated with fly ash, a by-product of coal combustion that is enriched in trace elements. We found differences in the bacterial communities among a fly ash-contaminated site and several reference wetlands. We then experimentally assessed the impacts of fly ash on the skin microbiome of adult spring peepers (Pseudacris crucifer). Frogs were exposed to fly ash in the laboratory for 12 h, the duration of a typical breeding event, and the skin microbiome was assessed after 5 days (experiment 1) or after 5 and 15 days (experiment 2). We examined bacterial community structure using 16S rRNA gene amplicon sequencing and metabolite profiles using high-pressure liquid chromatography-mass spectrometry (HPLC-MS). We found little impact as the result of acute exposure to fly ash on the bacterial communities or metabolite profiles in either experiment, suggesting that the bacterial symbiont communities of adults may be relatively resistant to brief contaminant exposure. However, housing frogs in the laboratory altered bacterial community structure in the two experiments, which supports prior research suggesting that environmental source pools are important for maintaining the amphibian skin microbiome. Therefore, for contaminants like fly ash that may alter the potential source pool of symbionts, we think it may be important to explore how contaminants affect the initial assembly of the amphibian skin microbiome in larval amphibians that develop within contaminated sites. IMPORTANCE: Animals are hosts to many symbiotic microorganisms, collectively called the microbiome, that play critical roles in host health. Therefore, environmental contaminants that alter the microbiome may impact hosts. Some of the most widespread contaminants, produced worldwide, are derived from the mining, storage, and combustion of coal for energy. Fly ash, for example, is a by-product of coal combustion. It contains compounds such as arsenic, selenium, cadmium, and strontium and is a recognized source of ground and surface water contamination. Here, we experimentally investigated the impacts of short-term fly ash exposure on the skin microbiome of spring peepers, one of many species of amphibian that sometimes breed in open fly ash disposal ponds. This research provides a look into the potential impacts of fly ash on an animal's microbiome and suggests important future directions for research on the effects of environmental contaminants on the microbiome.


Assuntos
Anuros , Bactérias/classificação , Bactérias/genética , Biota/efeitos dos fármacos , Poluentes Ambientais/metabolismo , Pele/efeitos dos fármacos , Animais , Análise por Conglomerados , Carvão Mineral , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Front Microbiol ; 7: 68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870025

RESUMO

Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.

20.
Front Microbiol ; 6: 1171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579083

RESUMO

Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont microbial systems as it is in many macro-systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...