Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38901159

RESUMO

Lipidomics is focusing on the screening of lipid species in complex mixtures using mass spectrometry-based approaches. In this work, we aim to enhance the intestinal lipidome coverage within the Oligo-Mouse-Microbiota (OMM12) colonized mouse model by testing eight mobile phase conditions on five reversed-phase columns. Our selected mobile phase modifiers included two ammonium salts, two concentrations, and the addition of respective acids at 0.1 %. We compared two columns with hybrid surface technology, two with ethylene bridged hybrid technology and one with core-shell particles. Best performance was attained for standards and intestinal lipidome, using either ammonium formate or acetate in ESI(+) or ammonium acetate in ESI(-) for all column technologies. Notably, a concentration of 5 mM ammonium salt showed optimal results for both modes, while the addition of acids had a negligible effect on lipid ionization efficiency. The HST BEH C18 column improved peak width and tailing factor parameters compared to other technologies. We achieved the highest lipid count in colon and ileum content, including ceramides, phosphatidylethanolamines and phosphatidylcholines, when using 5 mM ammonium acetate in ESI(-). Conversely, in ESI(+) 5 mM ammonium formate demonstrated superior coverage for diacylglycerols and triacylglycerols.

2.
Microbiome ; 12(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167150

RESUMO

BACKGROUND: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS: Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS: This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.


Assuntos
Microbiota , Pennisetum , Pennisetum/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Plantas/microbiologia , Exsudatos e Transudatos , Microbiologia do Solo , Rizosfera
3.
J Allergy Clin Immunol ; 152(3): 610-621, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271318

RESUMO

BACKGROUND: Growing up on traditional European or US Amish dairy farms in close contact with cows and hay protects children against asthma, and airway administration of extracts from dust collected from cowsheds of those farms prevents allergic asthma in mice. OBJECTIVES: This study sought to begin identifying farm-derived asthma-protective agents. METHODS: Our work unfolded along 2 unbiased and independent but complementary discovery paths. Dust extracts (DEs) from protective and nonprotective farms (European and Amish cowsheds vs European sheep sheds) were analyzed by comparative nuclear magnetic resonance profiling and differential proteomics. Bioactivity-guided size fractionation focused on protective Amish cowshed DEs. Multiple in vitro and in vivo functional assays were used in both paths. Some of the proteins thus identified were characterized by in-solution and in-gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzymatic digestion/peptide mapping followed by liquid chromatography/mass spectrometry. The cargo carried by these proteins was analyzed by untargeted liquid chromatography-high-resolution mass spectrometry. RESULTS: Twelve carrier proteins of animal and plant origin, including the bovine lipocalins Bos d 2 and odorant binding protein, were enriched in DEs from protective European cowsheds. A potent asthma-protective fraction of Amish cowshed DEs (≈0.5% of the total carbon content of unfractionated extracts) contained 7 animal and plant proteins, including Bos d 2 and odorant binding protein loaded with fatty acid metabolites from plants, bacteria, and fungi. CONCLUSIONS: Animals and plants from traditional farms produce proteins that transport hydrophobic microbial and plant metabolites. When delivered to mucosal surfaces, these agents might regulate airway responses.


Assuntos
Asma , Poeira , Feminino , Animais , Bovinos , Camundongos , Ovinos , Fazendas , Poeira/análise , Asma/prevenção & controle , Alérgenos , Sistema Respiratório
4.
Cell Metab ; 33(12): 2355-2366.e8, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34847376

RESUMO

Hexokinases (HK) catalyze the first step of glycolysis limiting its pace. HK2 is highly expressed in gut epithelium, contributes to immune responses, and is upregulated during inflammation. We examined the microbial regulation of HK2 and its impact on inflammation using mice lacking HK2 in intestinal epithelial cells (Hk2ΔIEC). Hk2ΔIEC mice were less susceptible to acute colitis. Analyzing the epithelial transcriptome from Hk2ΔIEC mice during colitis and using HK2-deficient intestinal organoids and Caco-2 cells revealed reduced mitochondrial respiration and epithelial cell death in the absence of HK2. The microbiota strongly regulated HK2 expression and activity. The microbially derived short-chain fatty acid (SCFA) butyrate repressed HK2 expression via histone deacetylase 8 (HDAC8) and reduced mitochondrial respiration in wild-type but not in HK2-deficient Caco-2 cells. Butyrate supplementation protected wild-type but not Hk2ΔIEC mice from colitis. Our findings define a mechanism how butyrate promotes intestinal homeostasis and suggest targeted HK2-inhibition as therapeutic avenue for inflammation.


Assuntos
Colite , Hexoquinase , Animais , Células CACO-2 , Morte Celular/fisiologia , Colite/metabolismo , Colite/microbiologia , Células Epiteliais/metabolismo , Hexoquinase/metabolismo , Histona Desacetilases/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo
5.
Sci Rep ; 11(1): 13294, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168180

RESUMO

Peptide glycation is an important, yet poorly understood reaction not only found in food but also in biological systems. The enormous heterogeneity of peptides and the complexity of glycation reactions impeded large-scale analysis of peptide derived glycation products and to understand both the contributing factors and how this affects the biological activity of peptides. Analyzing time-resolved Amadori product formation, we here explored site-specific glycation for 264 peptides. Intensity profiling together with in-depth computational sequence deconvolution resolved differences in peptide glycation based on microheterogeneity and revealed particularly reactive peptide collectives. These peptides feature potentially important sequence patterns that appear in several established bio- and sensory-active peptides from independent sources, which suggests that our approach serves system-wide applicability. We generated a pattern peptide map and propose that in peptide glycation the herein identified molecular checkpoints can be used as indication of sequence reactivity.


Assuntos
Monossacarídeos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Peptídeos/genética
6.
Front Mol Biosci ; 8: 660456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124150

RESUMO

The early-life metabolome of the intestinal tract is dynamically influenced by colonization of gut microbiota which in turn is affected by nutrition, i.e. breast milk or formula. A detailed examination of fecal metabolites was performed to investigate the effect of probiotics in formula compared to control formula and breast milk within the first months of life in healthy neonates. A broad metabolomics approach was conceptualized to describe fecal polar and semi-polar metabolites affected by feeding type within the first year of life. Fecal metabolomes were clearly distinct between formula- and breastfed infants, mainly originating from diet and microbial metabolism. Unsaturated fatty acids and human milk oligosaccharides were increased in breastfed, whereas Maillard products were found in feces of formula-fed children. Altered microbial metabolism was represented by bile acids and aromatic amino acid metabolites. Elevated levels of sulfated bile acids were detected in stool samples of breastfed infants, whereas secondary bile acids were increased in formula-fed infants. Microbial co-metabolism was supported by significant correlation between chenodeoxycholic or lithocholic acid and members of Clostridia. Fecal metabolites showed strong inter- and intra-individual behavior with features uniquely present in certain infants and at specific time points. Nevertheless, metabolite profiles converged at the end of the first year, coinciding with solid food introduction.

7.
Int J Med Microbiol ; 311(5): 151513, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34147944

RESUMO

Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Fezes , Humanos , Metaboloma , Enxofre
8.
Gut Microbes ; 12(1): 1-17, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33079623

RESUMO

Although it is generally accepted that dietary fiber is health promoting, the underlying immunological and molecular mechanisms are not well defined, especially with respect to cellulose, the most ubiquitous dietary fiber. Here, the impact of dietary cellulose on intestinal microbiota, immune responses and gene expression in health and disease was examined. Lack of dietary cellulose disrupted the age-related diversification of the intestinal microbiota, which subsequently remained in an immature state. Interestingly, one of the most affected microbial genera was Alistipes which is equipped with enzymes to degrade cellulose. Absence of cellulose changed the microbial metabolome, skewed intestinal immune responses toward inflammation, altered the gene expression of intestinal epithelial cells and mice showed increased sensitivity to colitis induction. In contrast, mice with a defined microbiota including A. finegoldii showed enhanced colonic expression of intestinal IL-22 and Reg3γ restoring intestinal barrier function. This study supports the epidemiological observations and adds a causal explanation for the health promoting effects of the most common biopolymer on earth.


Assuntos
Celulose/metabolismo , Fibras na Dieta/metabolismo , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/imunologia , Animais , Anti-Inflamatórios/metabolismo , Bacteroidetes/metabolismo , Colite/patologia , Inflamação/patologia , Interleucinas/biossíntese , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite/biossíntese , Interleucina 22
9.
Sci Transl Med ; 12(565)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055245

RESUMO

Although infection with the human enteropathogen Giardia lamblia causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood. Using a neonatal mouse model of persistent G. lamblia infection, we demonstrate that G. lamblia induced bile secretion and used the bile constituent phosphatidylcholine as a substrate for parasite growth. In addition, we show that G. lamblia infection altered the enteric microbiota composition, leading to enhanced bile acid deconjugation and increased expression of fibroblast growth factor 15. This resulted in elevated energy expenditure and dysregulated lipid metabolism with reduced adipose tissue, body weight gain, and growth in the infected mice. Our results indicate that this enteropathogen's modulation of bile acid metabolism and lipid metabolism in the neonatal mouse host led to an altered body composition, suggesting how G. lamblia infection could contribute to growth restriction in infants in endemic areas.


Assuntos
Microbioma Gastrointestinal , Giardíase , Animais , Bile , Giardia , Homeostase , Camundongos
10.
Gastroenterology ; 157(5): 1279-1292.e11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31326413

RESUMO

BACKGROUND & AIMS: Altered interactions between the mucosal immune system and intestinal microbiota contribute to pathogenesis of inflammatory bowel diseases (IBD). It is not clear how inhibitors of cytokines, such as antagonists of tumor necrosis factor (anti-TNF), affect the intestinal microbiome. We investigated the effects of anti-TNF agents on gut microbe community structure and function in a longitudinal 2-step study of patients with IBD. We correlated our findings with outcomes of treatment and investigated patterns of metabolites in fecal samples before and after anti-TNF therapy. METHODS: We performed a prospective study of 2 cohorts of patients in Germany; the discovery cohort comprised 12 patients with IBD, 17 patients with rheumatic disease, and 19 healthy individuals (controls); fecal samples were collected at baseline and 2, 6, and 30 weeks after induction of anti-TNF therapy. The validation cohort comprised 23 patients with IBD treated with anti-TNF or vedolizumab (anti-α4ß7 integrin) and 99 healthy controls; fecal samples were collected at baseline and at weeks 2, 6, and 14. Fecal microbiota were analyzed by V3-V4 16S ribosomal RNA gene amplicon sequencing. Clinical response and remission were determined by clinical disease activity scores. Metabolic network reconstruction and associated fecal metabolite level inference was performed in silico using the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) resource. Metabolomic analyses of fecal samples from a subset of patients were performed to validate metabolites associated with treatment outcomes. RESULTS: Anti-TNF therapy shifted the diversity of fecal microbiota in patients with IBD, but not with rheumatic disease, toward that of controls. Across timepoints, diversity indices did not vary significantly between patients with IBD who did or did not achieve clinical remission after therapy. In contrast, in silico modeling of metabolic interactions between gut microbes found metabolite exchange to be significantly reduced at baseline in fecal samples from patients with IBD and to be associated with later clinical remission. Predicted levels of butyrate and substrates involved in butyrate synthesis (ethanol or acetaldehyde) were significantly associated with clinical remission following anti-TNF therapy, verified by fecal metabolomic analyses. CONCLUSIONS: Metabolic network reconstruction and assessment of metabolic profiles of fecal samples might be used to identify patients with IBD likely to achieve clinical remission following anti-TNF therapy and increase our understanding of the heterogeneity of IBD.


Assuntos
Antirreumáticos/uso terapêutico , Bactérias/metabolismo , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/efeitos dos fármacos , Doenças Reumáticas/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Antirreumáticos/efeitos adversos , Bactérias/genética , Estudos de Casos e Controles , Fezes/microbiologia , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Metabolômica , Seleção de Pacientes , Valor Preditivo dos Testes , Estudos Prospectivos , Indução de Remissão , Doenças Reumáticas/diagnóstico , Doenças Reumáticas/imunologia , Doenças Reumáticas/microbiologia , Ribotipagem , Fatores de Tempo , Resultado do Tratamento , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Fator de Necrose Tumoral alfa/imunologia
11.
J Agric Food Chem ; 67(28): 8061-8069, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264412

RESUMO

Food processing of infant formula alters chemical structures, including the formation of Maillard reaction products between proteins and sugars. We detected early Maillard reaction products, so-called Amadori products, in stool samples of formula-fed infants. In total, four Amadori products (N-deoxylactulosyllysine, N-deoxyfructosyllysine, N-deoxylactulosylleucylisoleucine, N-deoxyfructosylleucylisoleucine) were identified by a combination of complementary nontargeted and targeted metabolomics approaches. Chemical structures were confirmed by preparation and isolation of reference compounds, LC-MS/MS, and NMR. The leucylisoleucine Amadori compounds, which most likely originate from ß-lactoglobulin, were excreted throughout the first year of life in feces of formula-fed infants but were absent in feces of breastfed infants. Despite high inter- and intraindividual differences of Amadori products in the infants' stool, solid food introduction resulted in a continuous decrease, proving infant formula as the major source of the excreted Amadori products.


Assuntos
Alimentação com Mamadeira/estatística & dados numéricos , Fezes/química , Produtos Finais de Glicação Avançada/química , Fórmulas Infantis/análise , Cromatografia Líquida , Feminino , Manipulação de Alimentos , Humanos , Lactente , Fórmulas Infantis/efeitos adversos , Espectroscopia de Ressonância Magnética , Reação de Maillard , Masculino , Espectrometria de Massas em Tandem
12.
Mol Metab ; 22: 96-109, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30792016

RESUMO

OBJECTIVE: The gut microbiota is an important influencing factor of metabolic health. Although dietary interventions with probiotics, prebiotics, and synbiotics can be effective means to regulate obesity and associated comorbidities, the underlying shifts in gut microbial communities, especially at the functional level, have not been characterized in great details. In this study, we sought to investigate the effects of synbiotics on the regulation of gut microbiota and the alleviation of high-fat diet (HFD)-induced metabolic disorders in mice. METHODS: Specific pathogen-free (SPF) male C57BL/6J mice were fed diets with either 10% (normal diet, ND) or 60% (high-fat diet, HFD) of total calories from fat (lard). Dietary interventions in the HFD-fed mice included (i) probiotic (Bifidobacterium animalis subsp. lactis and Lactobacillus paracasei subsp. paracasei DSM 46331), (ii) prebiotic (oat ß-glucan), and (iii) synbiotic (a mixture of i and ii) treatments for 12 weeks. Besides detailed characterization of host metabolic parameters, a multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing, metaproteomics and targeted metabolomics analysis. RESULTS: The synbiotic intervention significantly reduced body weight gain and alleviated features of metabolic complications. At the phylogenetic level, the synbiotic treatment significantly reversed HFD-induced changes in microbial populations, both in terms of richness and the relative abundance of specific taxa. Potentially important species such as Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of the synbiotic were identified. At the functional level, short-chain fatty acid and bile acid profiles revealed that all dietary interventions significantly restored cecal levels of acetate, propionate, and butyrate, while the synbiotic treatment reduced the bile acid pools most efficiently. Metaproteomics revealed that the effects of the synbiotic intervention might be mediated through metabolic pathways involved in carbohydrate, amino acid, and energy metabolisms. CONCLUSIONS: Our results suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally.


Assuntos
Microbioma Gastrointestinal , Obesidade/metabolismo , Simbióticos , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/induzido quimicamente
13.
Artigo em Inglês | MEDLINE | ID: mdl-30763867

RESUMO

The fecal metabolome is a complex mixture of endogenous, microbial metabolites, and food derived compounds. Hydrophilic interaction liquid chromatography (HILIC) enables the analysis of polar compounds, which is a valuable alternative to reversed-phase liquid chromatography in the field of metabolomics due to its ability to retain a greater portion of the polar metabolome. The objective of the study was to find the optimal chromatographic solution to perform non-targeted metabolomics of feces by means of HILIC ultra-high-pressure liquid chromatography mass spectrometry (UHPLC-Q-TOF-MS). The performance was systematically investigated analyzing a pooled fecal sample, and mixtures of 150 metabolites from different families, including for example amino acids, amines, indole derivatives, fatty acids and carbohydrates. Three different stationary phases (zwitterionic, amide and unbonded silica) were operated at three pH values (4.6, 6.8 and 9.0), and three salt gradient conditions (5-5, 5-10 and 5-25 mM ammonium acetate). Amide and zwitterionic stationary phases performed similarly at low pH, with highest number of detected standards, which increased by increasing the salt gradient. The amide column showed slightly better performance in terms of separation of isomers and peak widths and remarkably good performance at basic pH, with highest number of metabolite features in the non-targeted analysis. The zwitterionic column operated best in terms of number of detected standards, retention time distribution of standards and metabolite feature across whole chromatographic run. Thus, the zwitterionic column was proven to suit for non-targeted analysis of fecal samples, resulting in good coverage of especially amino acids and carbohydrates.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fezes/química , Espectrometria de Massas/métodos , Metaboloma/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Reprodutibilidade dos Testes
14.
Sci Rep ; 8(1): 10431, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993025

RESUMO

The autoimmune neurological disease, Multiple Sclerosis (MS), have increased at alarming rates in the Western society over the last few decades. While there are numerous efforts to develop novel treatment approaches, there is an unmet need to identify preventive strategies. We explored whether central nervous system (CNS) autoimmunity can be prevented through dietary manipulation using a spontaneous autoimmune encephalomyelitis mouse model. We report that the nutritional supplementation of non-fermentable fiber, common components of a vegetarian diet, in early adult life, prevents autoimmune disease. Dietary non-fermentable fiber alters the composition of the gut microbiota and metabolic profile with an increase in the abundance of long-chain fatty acids. Immune assays revealed that cecal extracts and a long chain fatty acid but not cecal lysates promoted autoimmune suppressive TH2 immune responses, demonstrating that non-fermentable fiber-induced metabolic changes account for the beneficial effects. Overall, these findings identify a non-invasive dietary strategy to prevent CNS autoimmunity and warrants a focus on nutritional approaches in human MS.


Assuntos
Fibras na Dieta/farmacologia , Encefalomielite Autoimune Experimental/prevenção & controle , Animais , Doenças Autoimunes/prevenção & controle , Sistema Nervoso Central/imunologia , Fibras na Dieta/uso terapêutico , Modelos Animais de Doenças , Ácidos Graxos/imunologia , Microbioma Gastrointestinal , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Camundongos , Células Th2/imunologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-29522956

RESUMO

Bile acids (BAs) are major components of bile synthesized from cholesterol and take part in the digestion of dietary lipids, as well as having signaling functions. They undergo extensive microbial metabolism inside the gastrointestinal tract. Here, we present a method of ultra-high pressure liquid chromatography coupled to ion trap mass spectrometry for quantification of 45 BAs in mouse cecum. The system was validated in regard to sensitivity with limits of detection and quantification (0.6-24.9 nM), interday accuracy (102.4%), interday precision (15.2%), recovery rate (74.7%), matrix effect (98.2%) and carry-over effect (<1.1%). Afterwards, we applied our method to investigate the effect of metformin on BA profiles. Diabetic mice were treated with metformin for 1 day or 14 days. One day of treatment resulted in a significant increase of total BA concentration (2.7-fold increase; db/db metformin 5.32 µmol/g, db/db control mice 1.95 µmol/g), most notable in levels of 7-oxodeoxycholic, 3-dehydrocholic and cholic acid. We observed only minor impact on BA metabolism after 14 days of metformin treatment, compared to the single treatment. Furthermore, healthy wild type mice had elevated concentrations of allocholic and ω-muricholic acid compared to diabetic mice. Our method proved the applicability of profiling BAs in cecum to investigate intestinal BA metabolism in diabetes and pharmacological applications.


Assuntos
Ácidos e Sais Biliares/análise , Ceco/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metformina/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Limite de Detecção , Modelos Lineares , Masculino , Camundongos , Camundongos Transgênicos , Reprodutibilidade dos Testes
16.
Front Immunol ; 8: 1036, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894447

RESUMO

Short-chain fatty acids (SCFAs), which are generated by the bacterial fermentation of dietary fibers, promote expansion of regulatory T cells (Tregs). Potential therapeutic value of SCFAs has been recently highlighted in the experimental models of T cell-mediated autoimmunity and allergic inflammation. These studies suggest that physiological intestinal concentrations of SCFAs within the millimolar range are crucial for dampening inflammation-mediated processes. Here, we describe opposing effects of SCFAs on T cell-mediated immune responses. In accordance with published data, lower butyrate concentrations facilitated differentiation of Tregs in vitro and in vivo under steady-state conditions. In contrast, higher concentrations of butyrate induced expression of the transcription factor T-bet in all investigated T cell subsets resulting in IFN-γ-producing Tregs or conventional T cells. This effect was mediated by the inhibition of histone deacetylase activity and was independent of SCFA-receptors FFA2 and FFA3 as well as of Na+-coupled SCFA transporter Slc5a8. Importantly, while butyrate was not able to induce the generation of Tregs in the absence of TGF-ß1, the expression of T-bet and IFN-γ was triggered upon stimulation of CD4+ T cells with this SCFA alone. Moreover, the treatment of germ-free mice with butyrate enhanced the expression of T-bet and IFN-γ during acute colitis. Our data reveal that, depending on its concentration and immunological milieu, butyrate may exert either beneficial or detrimental effects on the mucosal immune system.

17.
Sci Rep ; 7(1): 11047, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887494

RESUMO

The gut microbiota generates a huge pool of unknown metabolites, and their identification and characterization is a key challenge in metabolomics. However, there are still gaps on the studies of gut microbiota and their chemical structures. In this investigation, an unusual class of bacterial sulfonolipids (SLs) is detected in mouse cecum, which was originally found in environmental microbes. We have performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis. Eighteen SLs that differ in their capnoid and fatty acid chain compositions were identified. The SL called "sulfobacin B" was isolated, characterized, and was significantly increased in mice fed with high-fat diets. To reveal bacterial producers of SLs, metagenome analysis was acquired and only two bacterial genera, i.e., Alistipes and Odoribacter, were revealed to be responsible for their production. This knowledge enables explaining a part of the molecular complexity introduced by microbes to the mammalian gastrointestinal tract and can be used as chemotaxonomic evidence in gut microbiota.


Assuntos
Bacteroidetes/química , Bacteroidetes/metabolismo , Ceco/microbiologia , Dieta Hiperlipídica , Microbioma Gastrointestinal/efeitos dos fármacos , Lipídeos/análise , Animais , Cromatografia Líquida , Espectrometria de Massas , Camundongos
18.
Gut ; 66(5): 863-871, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26848182

RESUMO

OBJECTIVE: Iron deficiency is a common complication in patients with IBD and oral iron therapy is suggested to exacerbate IBD symptoms. We performed an open-labelled clinical trial to compare the effects of per oral (PO) versus intravenous (IV) iron replacement therapy (IRT). DESIGN: The study population included patients with Crohn's disease (CD; N=31), UC (N=22) and control subjects with iron deficiency (non-inflamed, NI=19). After randomisation, participants received iron sulfate (PO) or iron sucrose (IV) over 3 months. Clinical parameters, faecal bacterial communities and metabolomes were assessed before and after intervention. RESULTS: Both PO and IV treatments ameliorated iron deficiency, but higher ferritin levels were observed with IV. Changes in disease activity were independent of iron treatment types. Faecal samples in IBD were characterised by marked interindividual differences, lower phylotype richness and proportions of Clostridiales. Metabolite analysis also showed separation of both UC and CD from control anaemic participants. Major shifts in bacterial diversity occurred in approximately half of all participants after IRT, but patients with CD were most susceptible. Despite individual-specific changes in phylotypes due to IRT, PO treatment was associated with decreased abundances of operational taxonomic units assigned to the species Faecalibacterium prausnitzii, Ruminococcus bromii, Dorea sp. and Collinsella aerofaciens. Clear IV-specific and PO-specific fingerprints were evident at the level of metabolomes, with changes affecting cholesterol-derived host substrates. CONCLUSIONS: Shifts in gut bacterial diversity and composition associated with iron treatment are pronounced in IBD participants. Despite similar clinical outcome, oral administration differentially affects bacterial phylotypes and faecal metabolites compared with IV therapy. TRIAL REGISTRATION NUMBER: clinicaltrial.gov (NCT01067547).


Assuntos
Anemia Ferropriva/tratamento farmacológico , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Compostos Férricos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Glucárico/administração & dosagem , Hematínicos/administração & dosagem , Metaboloma/efeitos dos fármacos , Administração Intravenosa , Administração Oral , Anemia Ferropriva/etiologia , Colite Ulcerativa/complicações , Colite Ulcerativa/metabolismo , Doença de Crohn/complicações , Doença de Crohn/metabolismo , Fezes/química , Fezes/microbiologia , Óxido de Ferro Sacarado , Ferritinas/sangue , Humanos , Deficiências de Ferro , Qualidade de Vida , RNA Ribossômico 16S/análise
19.
Mol Metab ; 5(12): 1162-1174, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27900259

RESUMO

OBJECTIVE: Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. METHODS: GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. RESULTS: GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17ß-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes) as a characteristic feature of normal SPF mice fed lard. CONCLUSIONS: In conclusion, our study identified dietary cholesterol as a candidate ingredient affecting the crosstalk between gut microbiota and host metabolism.


Assuntos
Gorduras na Dieta/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Colesterol/metabolismo , Colesterol na Dieta/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Int J Med Microbiol ; 306(5): 266-279, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27012595

RESUMO

The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.


Assuntos
Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Metabolômica/métodos , Microbiota , Animais , Modelos Animais de Doenças , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...