Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1778(10): 2244-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18616927

RESUMO

The interaction of the glycoalkaloid tomatine with monolayers of a phospholipid (dimyristoylphosphatidylcholine, DMPC), and sphingolipid (egg sphingomyelin), and cholesterol is compared. Using measurements of the surface pressure response as a function of the subphase concentration of tomatine, interfacial binding constants are estimated for mixed monolayers of DMPC and cholesterol and for those of egg sphingomyelin and cholesterol of mole ratio 7:3. The binding constants obtained suggest a stronger interaction of tomatine with DMPC and cholesterol mixed monolayers, reflecting easier displacement of cholesterol from its interaction with DMPC than from its interaction with egg sphingomyelin. Mixtures of tomatine and cholesterol are found to spread directly at the water-air interface and form stable monolayers, suggesting that cholesterol holds tomatine at the interface despite the absence of observed monolayer behavior for tomatine alone. The interaction of tomatine with DMPC and cholesterol monolayers is found to exhibit a pH dependence in agreement with previously reported results for its interaction with liposomes; in particular, the interaction is much less at pH 5 than at pH 7 or pH 9. It is found that while tomatine interacts strongly with monolayers containing sitosterol, it does not interact with monolayers containing sitosterol glucoside. The response of monolayers of varying composition of DMPC and cholesterol to tomatine is also examined. Brewster angle microscopy (BAM) reveals further evidence for formation of suspected islands of tomatine + cholesterol complexes upon interaction with mixed monolayers of lipid and sterol.


Assuntos
Fosfolipídeos/química , Esfingomielinas/química , Esteróis/química , Tomatina/química , Lipossomas Unilamelares/química , Anti-Infecciosos/química , Ovos , Estrutura Molecular
2.
J Phys Chem B ; 110(44): 22220-9, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17078662

RESUMO

The interaction of the glycoalkaloid tomatine with monolayers of dimyristoylphosphatidylcholine (DMPC) and cholesterol, as well as other selected sterols, has been investigated using surface pressure measurements at constant area and Brewster angle microscopy (BAM). The interaction of tomatine with sterol monolayers is found to vary with the structure of the sterol. The interaction of tomatine with cholesterol-containing monolayers results in a surface pressure increase accompanied by the appearance of a mottled texture. Morphological changes are observed that suggest the formation of tomatine-cholesterol complexes that aggregate at the water-air interface. No morphology change observable by BAM is observed for monolayers containing epicholesterol, suggesting that the stereochemistry of hydrogen bonding between the sterol and the sugar units on tomatine is of particular significance. Strong interactions are observed with cholestanol- and coprostanol-containing monolayers, and BAM reveals formation of spiked aggregates upon interaction with 7:3 mole ratio DMPC/coprostanol mixed monolayers. More modest surface pressure changes are observed for cholestenone- and epicoprostanol-containing monolayers. A much smaller surface pressure increase is observed when tomatine is injected beneath a pure DMPC monolayer.


Assuntos
Dimiristoilfosfatidilcolina/química , Esteróis/química , Tomatina/química , Colestanol , Colesterol , Ligação de Hidrogênio , Microscopia , Estereoisomerismo , Tensão Superficial
3.
J Am Soc Mass Spectrom ; 13(5): 469-76, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12019970

RESUMO

Bond strengths for a series of Group 15 tetrachloride anions ACl4 (A = P, As, Sb, and Bi) have been determined by measuring thresholds for collision-induced dissociation of the anions in a flowing afterglow-tandem mass spectrometer. The central atoms in these systems have ten electrons, which violates the octet rule: the bond dissociation energies for ACl4- help to clarify the effect of the central atom on hypervalent bond strengths. The 0 K bond energies in kJ mol(-1) are D(Cl3A-CL-) = 90 +/- 7,115 +/- 7,161 +/- 8, and 154 +/- 15, respectively. Computational results using the B3LYP/LANL2DZpd level of theory are higher than the experimental bond energies. Calculations give a geometry for BiCl4 that is essentially tetrahedral rather than the see-saw observed for the other tetrachlorides. NBO calculations predict that the phosphorus and arsenic systems have 3C-4E bonds, while the antimony and bismuth systems are more ionic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...