Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39057656

RESUMO

Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing-structure-property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance.

2.
Polymers (Basel) ; 15(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896330

RESUMO

Enzyme-treated cellulose nanofibrils (CNFs) were produced via a lab-scale mass colloider using bleached kraft pulp (BKP) to evaluate their processability and power requirements during refining and spray-drying operations. To evaluate the energy efficiency in the CNF refining process, the net energy consumption, degree of polymerization (DP), and viscosity were determined. Less energy was consumed to attain a given fines level by using the endoglucanase enzymes. The DP and viscosity were also decreased using the enzymes. The morphological properties of the enzyme-pretreated spray-dried CNF powders (SDCNFs) were measured. Subsequently, the enzyme-pretreated SDCNFs were added to a PP matrix with MAPP as a coupling agent. The mixture was then compounded through a co-rotating twin-screw extruder to determine whether the enzyme treatment of the CNFs affects the mechanical properties of the composites. Compared to earlier studies on enhancing PMCs with SDCNF powders, this research investigates the use of enzyme-pretreated SDCNF powders. It was confirmed that the strength properties of PP increased by adding SDCNFs, and the strength properties were maintained after adding enzyme-pretreated SDCNFs.

3.
Biomacromolecules ; 22(10): 4037-4059, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506126

RESUMO

The production of cellulose nanofibrils (CNFs) continues to receive considerable attention because of their desirable material characteristics for a variety of consumer applications. There are, however, challenges that remain in transitioning CNFs from research to widespread adoption in the industrial sectors, including production cost and material performance. This Review covers CNFs produced from nonconventional fibrillation methods as a potential alternative solution. Pretreating biomass by biological, chemical, mechanical, or physical means can render plant feedstocks more facile for processing and thus lower energy requirements to produce CNFs. CNFs from nonconventional fibrillation methods have been investigated for various applications, including films, composites, aerogels, and Pickering emulsifiers. Continued research is needed to develop protocols to standardize the characterization (e.g., degree of fibrillation) of the lignocellulosic fibrillation processes and resulting CNF products to make them more attractive to the industry for specific product applications.


Assuntos
Celulose , Nanofibras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...