Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959852

RESUMO

Intracellular phosphoinositide 3-kinase (PI3K) signaling is activated by multiple bone-active receptors. Genetic mutations activating PI3K signaling are associated with clinical syndromes of tissue overgrowth in multiple organs, often including the skeleton. Bone formation is increased by removing the PI3K inhibitor PTEN, but the effect of direct PI3K in the osteoblast lineage has not been reported. We introduced a known gain-of-function mutation in Pik3ca, the gene encoding the p110α catalytic subunit of PI3K, in osteocytes and late osteoblasts using the dentin matrix protein-1 Cre (Dmp1Cre) mouse and assessed the skeletal phenotype. Femur shape was grossly normal, but cortical thickness was significantly greater in both male and female Dmp1Cre.Pik3caH1047R mice, leading to almost doubled bone strength at 12 weeks of age. Both sexes had smaller marrow areas from 6 weeks of age. Female mice also exhibited greater cross sectional area, which continued to increase until 24 weeks of age, resulting in a further increase in bone strength. While both male and female mice had increased endocortical mineralizing surface, only female mice had increased periosteal mineralizing surface. The bone formed in the Dmp1Cre.Pik3caH1047R mice showed no increase in intracortical remodeling nor any defect in cortical bone consolidation. In contrast, on both endocortical and periosteal surfaces, there was a greater extent of lamellar bone formation with highly organized osteocyte networks extending along the entire surface at a greater thickness than in control mice. In conclusion, direct activation of PI3Kα in cells targeted by Dmp1Cre leads to high cortical bone mass and strength with abundant lamellar cortical bone in female and male mice with no increase in intracortical remodeling. This differs from the effect of PTEN deletion in the same cells, suggesting that activating PI3Kα in osteoblasts and osteocytes may be a more suitable target to promote formation of lamellar bone.


Patients with genetic activation of an enzyme called phosphoinositide-3 kinase (PI3K) have tissue overgrowth syndromes, where parts of the body become enlarged, sometimes including the skeleton. There are two types of mutations that cause these problems: one that directly causes the PI3K enzyme to be more active, or one that removes the normal brake on PI3K signaling (called PTEN). We studied the effect of directly activating PI3K enzyme specifically in osteoblasts (the cells that form bone) and osteocytes (osteoblasts that make a network inside the bone tissue itself). We found mice with these mutations formed normally shaped bones that were very strong because the outer shell was thicker than usual. In both male and female mice, it became thicker on the inside of the shell, but in female mice it also became thicker on the outside, making the bones even stronger over time. The new bone was well-organized bone, which likely helped make the increase in bone strength so profound. This is very different to what has previously been shown in mice with the other type of mutation in their bone forming cells; those mice had a shell that contained many large holes (pores). This indicates that directly stimulating PI3K enzyme is more beneficial for bone than removing the PTEN brake.

2.
J Bone Miner Res ; 39(5): 595-610, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477809

RESUMO

Ablation of Cyp27b1 eliminates calcitriol but does not disturb fetal mineral homeostasis or skeletal development. However, independent of fetal genotypes, maternal loss of Cyp27b1 altered fetal mineral and hormonal levels compared to offspring of WT dams. We hypothesized that these maternal influences would alter postnatal skeletal development. Cyp27b1 null and WT females were mated to bear only Cyp27b1+/- offspring. Forty-eight hours after birth, pups were cross-fostered to dams of the same or opposite genotype that bore them. Maternal and offspring samples were collected on days 21 (weaning) and 42. Offspring measurements included minerals and hormones, BMC by DXA, ash weight and mineral content, gene expression, 3-point bending tests, and microCT. Maternal lactational behavior was evaluated. Milk was analyzed for nutritional content. At day 21, offspring fostered by nulls, independent of birth dam, had ~20% lower weight, BMC, ash weight, and ash calcium than pups fostered by WT dams. Adjustment for body weight accounted for the lower BMC but not the lower ash weight and ash calcium. Hormones and serum/urine minerals did not differ across offspring groups. Offspring fostered by nulls had shorter femurs and lower cortical thickness, mean polar moment of inertia, cortical area, trabecular bone volume, and trabecular number. Dam lactational behaviors and milk nutritional content did not differ between groups. At day 42, body weight, ash weight, lengths, BMC, and tibial bone strength were no longer different between pups fostered by null vs WT dams. In summary, pups fostered by Cyp27b1 nulls, regardless of birth dam, have proportionately smaller skeletons at 21 d, impaired microstructure, but normal mineral homeostasis. The skeletal effects are largely recovered by day 42 (3 wk after weaning). In conclusion, maternal loss of calcitriol impairs early postnatal cortical bone growth and trabecular bone mass, but affected offspring catch up after weaning.


Assuntos
Desenvolvimento Ósseo , Calcitriol , Animais , Feminino , Calcitriol/sangue , Calcitriol/metabolismo , Desenvolvimento Ósseo/efeitos dos fármacos , Camundongos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Densidade Óssea/efeitos dos fármacos , Lactação , Masculino , Gravidez , Camundongos Knockout , Peso Corporal/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
3.
Front Cell Dev Biol ; 11: 1020091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138794

RESUMO

Introduction: The actin cytoskeleton remodels to enable diverse processes essential to immunity, such as cell adhesion, migration and phagocytosis. A panoply of actin-binding proteins regulate these rapid rearrangements to induce actin-based shape changes and to generate force. L-plastin (LPL) is a leukocyte-specific, actin-bundling protein that is regulated in part by phosphorylation of the Ser-5 residue. LPL deficiency in macrophages impairs motility, but not phagocytosis; we recently found that expression of LPL in which the S5 residue is converted to a non-phosphorylatable alanine (S5A-LPL) resulted in diminished phagocytosis, but unimpaired motility. Methods: To provide mechanistic insight into these findings, we now compare the formation of podosomes (an adhesive structure) and phagosomes in alveolar macrophages derived from wild-type (WT), LPL-deficient, or S5A-LPL mice. Both podosomes and phagosomes require rapid remodeling of actin, and both are force-transmitting. Actin rearrangement, force generation, and signaling rely upon recruitment of many actin-binding proteins, including the adaptor protein vinculin and the integrin-associated kinase Pyk2. Prior work suggested that vinculin localization to podosomes was independent of LPL, while Pyk2 was displaced by LPL deficiency. We therefore chose to compare vinculin and Pyk2 co-localization with F-actin at sites of adhesion of phagocytosis in AMs derived from WT, S5A-LPL or LPL-/- mice, using Airyscan confocal microscopy. Results: As described previously, podosome stability was significantly disrupted by LPL deficiency. In contrast, LPL was dispensable for phagocytosis and was not recruited to phagosomes. Recruitment of vinculin to sites of phagocytosis was significantly enhanced in cells lacking LPL. Expression of S5A-LPL impeded phagocytosis, with reduced appearance of ingested bacteria-vinculin aggregates. Discussion: Our systematic analysis of the regulation of LPL during podosome vs. phagosome formation illuminates essential remodeling of actin during key immune processes.

4.
Cell Metab ; 34(10): 1499-1513.e8, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36070756

RESUMO

Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.


Assuntos
Tecido Adiposo Branco , Antioxidantes , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antioxidantes/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Amido/metabolismo
5.
J Endocrinol ; 255(1): 25-37, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938692

RESUMO

Bone strength is partially determined during cortical bone consolidation, a process comprising coalescence of peripheral trabecular bone and its progressive mineralisation. Mice with genetic deletion of suppressor of cytokine signalling 3 (Socs3), an inhibitor of STAT3 signalling, exhibit delayed cortical bone consolidation, indicated by high cortical porosity, low mineral content, and low bone strength. Since leptin receptor (LepR) is expressed in the osteoblast lineage and is suppressed by SOCS3, we evaluated whether LepR deletion in osteocytes would rectify the Dmp1cre.Socs3fl/fl bone defect. First, we tested LepR deletion in osteocytes by generating Dmp1cre.LepRfl/fl mice and detected no significant bone phenotype. We then generated Dmp1cre.Socs3fl/fl.LepRfl/fl mice and compared them to Dmp1cre.Socs3fl/fl controls. Between 6 and 12 weeks of age, both Dmp1cre.Socs3fl/fl.LepRfl/fl and control (Dmp1cre.Socs3fl/fl) mice showed an increasing proportion of more heavily mineralised bone, indicating some cortical consolidation with time. However, at 12 weeks of age, rather than resolving the phenotype, delayed consolidation was extended in female Dmp1cre.Socs3fl/fl.LepRfl/fl mice. This was indicated in both metaphysis and diaphysis by greater proportions of low-density bone, lower proportions of high-density bone, and greater cortical porosity than Dmp1cre.Socs3fl/fl controls. There was also no change in the proportion of osteocytes staining positive for phospho-STAT3, suggesting the effect of LepR deletion in Dmp1cre.Socs3fl/fl mice is STAT3-independent. This identifies a new role for leptin signalling in bone which opposes our original hypothesis. Although LepR in osteocytes has no irreplaceable physiological role in normal bone maturation, when STAT3 is hyperactive, LepR in Dmp1Cre-expressing cells supports cortical consolidation.


Assuntos
Osteócitos , Receptores para Leptina , Animais , Osso e Ossos , Osso Cortical , Feminino , Camundongos , Camundongos Knockout , Osteoblastos , Receptores para Leptina/genética
6.
J Bone Miner Res ; 37(10): 1876-1890, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856245

RESUMO

Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fator Estimulador de Colônias de Granulócitos , Osteócitos , Receptores de Fator Estimulador de Colônias de Granulócitos , Fator de Transcrição STAT3 , Animais , Feminino , Masculino , Camundongos , Osso Cortical/diagnóstico por imagem , Fator Estimulador de Colônias de Granulócitos/genética , Interleucina-6 , Osteócitos/patologia , RNA Mensageiro , Fator de Transcrição STAT3/metabolismo
7.
J Cell Mol Med ; 26(14): 4021-4031, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35701367

RESUMO

The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER-associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3-week-old male OI Col1a2 +/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2 +/p.G610C mouse bone structure, strength or composition, measured by micro-computed tomography, three point bending tests and Fourier-transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals.


Assuntos
Osteogênese Imperfeita , Animais , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Mutação/genética , Osteogênese , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Microtomografia por Raio-X
8.
J Bone Miner Res ; 37(3): 547-558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870348

RESUMO

Cortical bone develops and changes in response to mechanical load, which is sensed by bone-embedded osteocytes. The bone formation response to load depends on STAT3 intracellular signals, which are upregulated after loading and are subject to negative feedback from Suppressor of Cytokine Signaling 3 (Socs3). Mice with Dmp1Cre-targeted knockout of Socs3 have elevated STAT3 signaling in osteocytes and display delayed cortical bone maturation characterized by impaired accrual of high-density lamellar bone. This study aimed to determine whether these mice exhibit an altered response to mechanical load. The approach used was to test both treadmill running and tibial compression in female Dmp1Cre.Socs3f/f mice. Treadmill running for 5 days per week from 6 to 11 weeks of age did not change cortical bone mass in control mice, but further delayed cortical bone maturation in Dmp1Cre.Socs3f/f mice; accrual of high-density bone was suppressed, and cortical thickness was less than in genetically-matched sedentary controls. When strain-matched anabolic tibial loading was tested, both control and Dmp1Cre.Socs3f/f mice exhibited a significantly greater cortical thickness and periosteal perimeter in loaded tibia compared with the contralateral non-loaded bone. At the site of greatest compressive strain, the loaded Dmp1Cre.Socs3f/f tibias showed a significantly greater response than controls, indicated by a greater increase in cortical thickness. This was due to a greater bone formation response on both periosteal and endocortical surfaces, including formation of abundant woven bone on the periosteum. This suggests a greater sensitivity to mechanical load in Dmp1Cre.Socs3f/f bone. In summary, mice with targeted SOCS3 deletion and immature cortical bone have an exaggerated response to both physiological and experimental mechanical loads. We conclude that there is an optimal level of osteocytic response to mechanical load required for cortical bone maturation and that load-induced bone formation may be increased by augmenting STAT3 signaling within osteocytes. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteócitos , Osteogênese , Fator de Transcrição STAT3/metabolismo , Animais , Desenvolvimento Ósseo , Osso Cortical , Feminino , Camundongos , Osteogênese/fisiologia , Periósteo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tíbia/fisiologia
9.
Sci Rep ; 11(1): 14088, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239012

RESUMO

Loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and incompletely penetrant craniosynostosis. The impact of LOF in IL11 has not been characterized. We generated IL11 knockout (Il11-/-) mice that are born in expected ratios and have normal hematological profiles. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation with TGFß1. Following bleomycin-induced lung injury, Il11-/- mice are protected from pulmonary fibrosis and exhibit lesser ERK, STAT3 and NF-kB activation, reduced Il1b, Timp1, Ccl2 and diminished IL6 expression, both at baseline and after injury: placing Il11 activity upstream of IL6 in this model. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have craniosynostosis, have normal long bone mass and reduced body weights. These data further establish the role of IL11 signaling in lung fibrosis while suggesting that bone development abnormalities can be associated with mutation of IL11RA but not IL11, which may have implications for therapeutic targeting of IL11 signaling.


Assuntos
Craniossinostoses/complicações , Fertilidade , Inflamação/complicações , Inflamação/patologia , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Pulmão/patologia , Animais , Bleomicina , Diferenciação Celular , Craniossinostoses/sangue , Feminino , Fibronectinas/metabolismo , Humanos , Infertilidade Feminina/sangue , Infertilidade Feminina/patologia , Inflamação/sangue , Metabolômica , Camundongos Knockout , Miofibroblastos/patologia , NF-kappa B/metabolismo , Fosforilação , Fibrose Pulmonar/sangue , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia , Fator de Transcrição STAT3/metabolismo , Proteína Smad2
10.
Bio Protoc ; 11(1): e3873, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33732762

RESUMO

Bone strength is controlled by both bone mass, and the organization and quality of the bone material. The current standard method for measuring bone mass in mouse and rat studies is micro-computed tomography. This method typically uses a single threshold to identify bone material in the cortical and trabecular regions. However, this single threshold method obscures information about the mineral content of the bone material and depends on normal morphology to separately analyze cortical and trabecular structures. To extend this method to identify bone mass at multiple density levels, we have established a protocol for unbiased selection and application of multiple thresholds using a standard laboratory-based micro-computed tomography instrument. This non-invasive method can be applied to longitudinal studies and archived samples and provides additional information about bone structure and strength.

11.
Elife ; 92020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32458800

RESUMO

Bone strength is determined by its dense cortical shell, generated by unknown mechanisms. Here we use the Dmp1Cre:Socs3f/f mouse, with delayed cortical bone consolidation, to characterise cortical maturation and identify control signals. We show that cortical maturation requires a reduction in cortical porosity, and a transition from low to high density bone, which continues even after cortical shape is established. Both processes were delayed in Dmp1Cre:Socs3f/f mice. SOCS3 (suppressor of cytokine signalling 3) inhibits signalling by leptin, G-CSF, and IL-6 family cytokines (gp130). In Dmp1Cre:Socs3f/f bone, STAT3 phosphorylation was prolonged in response to gp130-signalling cytokines, but not G-CSF or leptin. Deletion of gp130 in Dmp1Cre:Socs3f/f mice suppressed STAT3 phosphorylation in osteocytes and osteoclastic resorption within cortical bone, leading to rescue of the corticalisation defect, and restoration of compromised bone strength. We conclude that cortical bone development includes both pore closure and accumulation of high density bone, and that these processes require suppression of gp130-STAT3 signalling in osteocytes.


Assuntos
Desenvolvimento Ósseo , Receptor gp130 de Citocina/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Osso e Ossos/metabolismo , Receptor gp130 de Citocina/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética
12.
Bio Protoc ; 10(6): e3560, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659531

RESUMO

Bone formation occurs during embryogenesis, skeletal growth and during the process of skeletal renewal throughout life. In the process of bone formation, osteoblasts lay down a collagen-containing matrix, termed osteoid, which is gradually hardened by incorporation of mineral crystals. Although osteoblasts can be induced to differentiate and to deposit mineral in culture, this system does not always provide results that reflect the ability of agents to stimulate bone formation in vivo. This protocol describes a rapid and reliable method for testing local administration of agents on bone formation in vivo. In this method, mice are injected with the agent of question for 5 successive days. Fluorochrome labels are injected prior to, and after agents used for testing, and samples are collected and analysed by undecalcified bone histology and histomorphometry. This provides a robust method for assessing the ability of agents to stimulate bone formation, and if a short-term modification is used, can also be used for testing gene responses in bone to the same stimuli.

13.
J Biol Chem ; 294(19): 7850-7863, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30923130

RESUMO

Interleukin 6 (IL-6) supports development of bone-resorbing osteoclasts by acting early in the osteoblast lineage via membrane-bound (cis) or soluble (trans) receptors. Here, we investigated how IL-6 signals and modifies gene expression in differentiated osteoblasts and osteocytes and determined whether these activities can promote bone formation or support osteoclastogenesis. Moreover, we used a genetically altered mouse with circulating levels of the pharmacological IL-6 trans-signaling inhibitor sgp130-Fc to determine whether IL-6 trans-signaling is required for normal bone growth and remodeling. We found that IL-6 increases suppressor of cytokine signaling 3 (Socs3) and CCAAT enhancer-binding protein δ (Cebpd) mRNA levels and promotes signal transducer and activator of transcription 3 (STAT3) phosphorylation by both cis- and trans-signaling in cultured osteocytes. In contrast, RANKL (Tnfsf11) mRNA levels were elevated only by trans-signaling. Furthermore, we observed soluble IL-6 receptor release and ADAM metallopeptidase domain 17 (ADAM17) sheddase expression by osteocytes. Despite the observation that IL-6 cis-signaling occurs, IL-6 stimulated bone formation in vivo only via trans-signaling. Although IL-6 stimulated RANKL (Tnfsf11) mRNA in osteocytes, these cells did not support osteoclast formation in response to IL-6 alone; binucleated TRAP+ cells formed, and only in response to trans-signaling. Finally, pharmacological, sgp130-Fc-mediated inhibition of IL-6 trans-signaling did not impair bone growth or remodeling unless mice had circulating sgp130-Fc levels > 10 µg/ml. At those levels, osteopenia and impaired bone growth occurred, reducing bone strength. We conclude that high sgp130-Fc levels may have detrimental off-target effects on the skeleton.


Assuntos
Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Transdução de Sinais , Proteína ADAM17/metabolismo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Camundongos , Ligante RANK/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
14.
Nat Commun ; 8(1): 806, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993616

RESUMO

Long bone strength is determined by its outer shell (cortical bone), which forms by coalescence of thin trabeculae at the metaphysis (corticalization), but the factors that control this process are unknown. Here we show that SOCS3-dependent cytokine expression regulates bone corticalization. Young male and female Dmp1Cre.Socs3 f/f mice, in which SOCS3 has been ablated in osteocytes, have high trabecular bone volume and poorly defined metaphyseal cortices. After puberty, male mice recover, but female corticalization is still impaired, leading to a lasting defect in bone strength. The phenotype depends on sex-steroid hormones: dihydrotestosterone treatment of gonadectomized female Dmp1Cre.Socs3 f/f mice restores normal cortical morphology, whereas in males, estradiol treatment, or IL-6 deletion, recapitulates the female phenotype. This suggests that androgen action promotes metaphyseal corticalization, at least in part, via IL-6 signaling.The strength of long bones is determined by coalescence of trabeculae during corticalization. Here the authors show that this process is regulated by SOCS3 via a mechanism dependent on IL-6 and expression of sex hormones.


Assuntos
Androgênios/metabolismo , Interleucina-6/metabolismo , Osteogênese/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Androgênios/farmacologia , Animais , Osso Esponjoso/fisiologia , Condrócitos/metabolismo , Di-Hidrotestosterona/farmacologia , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Ovariectomia , Proteína 3 Supressora da Sinalização de Citocinas/genética
15.
J Biol Chem ; 291(41): 21703-21716, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27539849

RESUMO

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are IL-6 family members with a wide range of biological functions. Human OSM (hOSM) and murine LIF (mLIF) act in mouse cells via a LIF receptor (LIFR)-glycoprotein 130 (gp130) heterodimer. In contrast, murine OSM (mOSM) signals mainly via an OSM receptor (OSMR)-gp130 heterodimer and binds with only very low affinity to mLIFR. hOSM and mLIF stimulate bone remodeling by both reducing osteocytic sclerostin and up-regulating the pro-osteoclastic factor receptor activator of NF-κB ligand (RANKL) in osteoblasts. In the absence of OSMR, mOSM still strongly suppressed sclerostin and stimulated bone formation but did not induce RANKL, suggesting that intracellular signaling activated by the low affinity interaction of mOSM with mLIFR is different from the downstream effects when mLIF or hOSM interacts with the same receptor. Both STAT1 and STAT3 were activated by mOSM in wild type cells or by mLIF/hOSM in wild type and Osmr-/- cells. In contrast, in Osmr-/- primary osteocyte-like cells stimulated with mOSM (therefore acting through mLIFR), microarray expression profiling and Western blotting analysis identified preferential phosphorylation of STAT3 and induction of its target genes but not of STAT1 and its target genes; this correlated with reduced phosphorylation of both gp130 and LIFR. In a mouse model of spontaneous osteopenia caused by hyperactivation of STAT1/3 signaling downstream of gp130 (gp130Y757F/Y757F), STAT1 deletion rescued the osteopenic phenotype, indicating a beneficial effect of promoting STAT3 signaling over STAT1 downstream of gp130 in this low bone mass condition, and this may have therapeutic value.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Oncostatina M/metabolismo , Osteócitos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Modelos Animais de Doenças , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Camundongos , Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Tamanho do Órgão , Osteócitos/patologia , Fosforilação/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética
16.
PLoS Negl Trop Dis ; 10(5): e0004750, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27214379

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0004682.].

17.
PLoS Negl Trop Dis ; 10(4): e0004682, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27093158

RESUMO

BACKGROUND: Mosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage. METHODOLOGY/PRINCIPAL FINDINGS: Using mice deficient in interferon α/ß and Ɣ receptors (AG129 mice), we report that these animals were highly susceptible to ZIKV infection and disease, succumbing within seven to eight days. Rapid viremic dissemination was observed in visceral organs and brain; but only was associated with severe pathologies in the brain and muscle. Finally, these results were consistent across challenge routes, age of mice, and inoculum doses. These data represent a mouse model for ZIKV that is not dependent on adapting ZIKV to intracerebral passage in mice. CONCLUSIONS/SIGNIFICANCE: Foot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.


Assuntos
Modelos Animais de Doenças , Infecção por Zika virus/patologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Morte , Camundongos , Camundongos Knockout , Músculos/patologia , Receptor de Interferon alfa e beta/deficiência , Receptores de Interferon/deficiência , Viremia , Receptor de Interferon gama
18.
PLoS Negl Trop Dis ; 10(4): e0004677, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27124663

RESUMO

BACKGROUND: New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. METHODOLOGY/PRINCIPAL FINDINGS: Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. CONCLUSIONS/SIGNIFICANCE: These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this technology beyond DENV.


Assuntos
Aedes/microbiologia , Aedes/virologia , Antibiose , Febre de Chikungunya/transmissão , Vírus Chikungunya/isolamento & purificação , Transmissão de Doença Infecciosa/prevenção & controle , Wolbachia/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Febre de Chikungunya/prevenção & controle , Insetos Vetores , Saliva/virologia , Análise de Sobrevida , Wolbachia/fisiologia
19.
Bone ; 64: 47-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24721701

RESUMO

Muscle and bone are intimately linked by bi-directional signals regulating both muscle and bone cell gene expression and proliferation. It is generally accepted that muscle cells secrete factors (myokines) that influence adjacent bone cells, but these myokines are yet to be identified. We have previously shown that osteocyte-specific deletion of the co-receptor subunit utilized by IL-6 family cytokines, glycoprotein 130 (gp130), resulted in impaired bone formation in the trabecular bone, but enhanced periosteal expansion, suggesting a gp130-dependent periosteum-specific inhibition of osteoblast function, potentially induced by the local muscle fibres. We report here that differentiated primary calvarial osteoblasts cultured in myotube-conditioned media (CM) from myogenic C2C12 cells show reduced mRNA levels of genes associated with osteoblast differentiation. Alkaline phosphatase protein activity and all mRNA markers of osteoblast differentiation in the tested panel (runx2, osterix, alkaline phosphatase, parathyroid hormone (PTH) receptor, osteoprotegerin, osteocalcin, sclerostin) were reduced following culture with myotube CM. The exception was RANKL, which was significantly elevated in differentiated primary osteoblast cultures expressing osteocytic genes. A cytokine array of the C2C12 myotube-conditioned media identified TIMP-1 and MCP-1 as the most abundant myokines, but treatment with recombinant TIMP-1 or MCP-1 did not inhibit osteoblast gene expression. Rather, the IL-6 family cytokine ciliary neurotrophic factor (CNTF), which we found abundantly expressed by mouse muscle at the transcript and protein level, reduced osteoblast gene expression, although not to the same extent as the myotube-conditioned media. These data indicate that muscle cells secrete abundant TIMP-1, MCP-1, and CNTF, and that of these, only CNTF has the ability to suppress osteoblast function and gene expression in a similar manner to myotube-conditioned medium. This suggests that CNTF is an inhibitory myokine for osteoblasts.


Assuntos
Diferenciação Celular/fisiologia , Quimiocinas/fisiologia , Fator Neurotrófico Ciliar/fisiologia , Citocinas/fisiologia , Osteoblastos/citologia , Animais , Linhagem Celular , Fator Neurotrófico Ciliar/metabolismo , Meios de Cultivo Condicionados , Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Ligante RANK/metabolismo , Receptor do Fator Neutrófico Ciliar/metabolismo
20.
J Bone Miner Res ; 29(6): 1492-505, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24339143

RESUMO

Interleukin-6 (IL-6) family cytokines act via gp130 in the osteoblast lineage to stimulate the formation of osteoclasts (bone resorbing cells) and the activity of osteoblasts (bone forming cells), and to inhibit expression of the osteocyte protein, sclerostin. We report here that a profound reduction in trabecular bone mass occurs both when gp130 is deleted in the entire osteoblast lineage (Osx1Cre gp130 f/f) and when this deletion is restricted to osteocytes (DMP1Cre gp130 f/f). This was caused not by an alteration in osteoclastogenesis, but by a low level of bone formation specific to the trabecular compartment. In contrast, cortical diameter increased to maintain ultimate bone strength, despite a reduction in collagen type 1 production. We conclude that osteocytic gp130 signaling is required for normal trabecular bone mass and proper cortical bone composition.


Assuntos
Receptor gp130 de Citocina/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Contagem de Células , Linhagem da Célula , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão , Osteoblastos/citologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/citologia , Osteócitos/metabolismo , Reprodutibilidade dos Testes , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...