Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; 18(11): e2105619, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064635

RESUMO

The recent introduction of slow vacuum filtration (SVF) technology has shown great promise for reproducibly creating high-quality, large-area aligned films of single-wall carbon nanotubes (SWCNTs) from solution-based dispersions. Despite clear advantages over other SWCNT alignment techniques, SVF remains in the developmental stages due to a lack of an agreed-upon alignment mechanism, a hurdle which hinders SVF optimization. In this work, the filter membrane surface is modified to show how the resulting SWCNT nematic order can be significantly enhanced. It is observed that directional mechanical grooving on filter membranes does not play a significant role in SWCNT alignment, despite the tendency for nanotubes to follow the groove direction. Chemical treatments to the filter membrane are shown to increase SWCNT alignment by nearly 1/3. These findings suggest that membrane surface structure acts to create a directional flow along the filter membrane surface that can produce global SWCNT alignment during SVF, rather serving as an alignment template.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Vácuo
2.
Nano Lett ; 19(10): 7256-7264, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31507183

RESUMO

Over the past decade, substantial progress has been made in the chemical control (chiral enrichment, length sorting, handedness selectivity, and filling substance) of single-wall carbon nanotubes (SWCNTs). Recently, it was shown that large, horizontally aligned films can be created out of postprocessed SWCNT solutions. Here, we use machine-vision automation and parallelization to simultaneously produce globally aligned SWCNT films using pressure-driven filtration. Feedback control enables filtration to occur with a constant flow rate that not only improves the nematic ordering of the SWCNT films but also provides the ability to align a wide range of SWCNT types and on a variety of nanoporous membranes using the same filtration parameters. Using polarized optical spectroscopic techniques, we show that under standard implementation, meniscus combing produces a two-dimensional radial SWCNT alignment on one side of the film. After we flatten the meniscus through silanization, spatially resolved nematicity maps on both sides of the SWCNT film reveal global alignment across the entire structure. From experiments changing ionic strength and membrane charging, we provide evidence that the SWCNT alignment mechanism stems from an interplay of intertube interactions and ordered membrane charging. This work opens up the possibility of creating globally aligned SWCNT film structures for a new generation of nanotube electronics and optical control elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...