Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Am ; 324(5): 10, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39020846
2.
Curr Biol ; 30(4): R155-R156, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32097638

RESUMO

Evidence from live gray whale strandings suggests that their navigation may be disrupted by increased radio frequency noise generated by solar storms, suggesting the potential for magnetoreception in this species.


Assuntos
Ruído/efeitos adversos , Ondas de Rádio/efeitos adversos , Baleias/fisiologia , Acústica , Animais , Atmosfera , Conservação dos Recursos Naturais
3.
Ann N Y Acad Sci ; 1432(1): 46-62, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120888

RESUMO

From the birth of galaxies to the self-organizing dynamics of our planet to the ongoing expansion of the universe, the more we discover about the evolution of the cosmos, the more acutely we realize the enormity of what remains to be known. Just this year astrophysicists at the University of Nottingham confirmed that there are at least two trillion galaxies in the cosmos, 10 times more than had been previously thought. What guidance or wisdom can the study of cosmology and astrophysics offer us in our search for meaning and purpose? In conversation with Steve Paulson, executive producer and host of To the Best of Our Knowledge, theoretical physicists Paul Davies and Ard Louis, and astrophysicist Lucianne Walkowicz share their perceptions based on years of gazing upward and beyond our own intimate planet.


Assuntos
Meio Ambiente Extraterreno , Vida , Filosofia , Espiritualidade , Evolução Biológica , Humanos
4.
Astrobiology ; 10(7): 751-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20879863

RESUMO

Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 108 protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Atividade Solar , Simulação de Ambiente Espacial/métodos , Radiação Cósmica , Metano/análise , Ozônio/análise , Planetas , Radiação Ionizante , Astros Celestes , Raios Ultravioleta
5.
Science ; 330(6000): 51-4, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20798283

RESUMO

The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.

6.
Science ; 327(5968): 977-80, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20056856

RESUMO

The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

7.
Astrobiology ; 7(1): 30-65, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17407403

RESUMO

Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.


Assuntos
Exobiologia , Planetas , Fenômenos Astronômicos , Astronomia , Ecossistema , Meio Ambiente Extraterreno , Origem da Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...