Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 10(1): 131, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35996183

RESUMO

BACKGROUND: Top-soil microbiomes make a vital contribution to the Earth's ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS: The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa's top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION: This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. Video Abstract.


Assuntos
Microbiota , Solo , Biodiversidade , Clima Desértico , Ecossistema , Microbiota/genética , Solo/química , Microbiologia do Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30348874

RESUMO

Trophic rewilding-the (re)introduction of missing large herbivores and/or their predators-is increasingly proposed to restore biodiversity and biotic interactions, but its effects on soils have been largely neglected. The high diversity of soil organisms and the ecological functions they perform mean that the full impact of rewilding on ecosystems cannot be assessed considering only above-ground food webs. Here we outline current understanding on how animal species of rewilding interest affect soil structure, processes and communities, and how in turn soil biota may affect species above ground. We highlight considerable uncertainty in soil responses to and feedbacks on above-ground consumers, with potentially large implications for rewilding interactions with global change. For example, the impact of large herbivores on soil decomposers and plant-soil interactions could lead to reduced carbon sequestration, whereas herbivore interactions with keystone biota such as mycorrhizal fungi, dung beetles and bioturbators could promote native plants and ecosystem heterogeneity. Moreover, (re)inoculation of keystone soil biota could be considered as a strategy to meet some of the objectives of trophic rewilding. Overall, we call for the rewilding research community to engage more with soil ecology experts and consider above-ground-below-ground linkages as integral to assess potential benefits as well as pitfalls.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Herbivoria , Solo , Biodiversidade , Microbiologia do Solo
3.
Ecology ; 99(2): 312-321, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315515

RESUMO

Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna.


Assuntos
Mudança Climática , Solo/química , Animais , Regiões Antárticas , Ecossistema , Microbiologia do Solo
4.
Mar Genomics ; 37: 1-17, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28970064

RESUMO

The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Pesquisa Interdisciplinar , Regiões Antárticas , Biodiversidade , Mudança Climática , Congressos como Assunto , Ecologia , Genômica
5.
Sci Rep ; 6: 26189, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189430

RESUMO

Although most models suggest continental Antarctica was covered by ice during the Last Glacial Maximum (LGM) it has been speculated that endemic species of soil invertebrates could have survived the Pleistocene at high elevation habitats protruding above the ice sheets. We analyzed a series of soil samples from different elevations at three locations along the Beardmore Glacier in the Transantarctic Mountains (in order of increasing elevation): Ebony Ridge (ER), Cloudmaker (CM), and Meyer Desert (MD). Geochemical analyses show the MD soils, which were exposed during the LGM, were the least weathered compared to lower elevations, and also had the highest total dissolved solids (TDS). MD soils are dominated by nitrate salts (NO3/Cl ratios >10) that can be observed in SEM images. High δ(17)O and δ(18)O values of the nitrate indicate that its source is solely of atmospheric origin. It is suggested that nitrate concentrations in the soil may be utilized to determine a relative "wetting age" to better assess invertebrate habitat suitability. The highest elevation sites at MD have been exposed and accumulating salts for the longest times, and because of the salt accumulations, they were not suitable as invertebrate refugia during the LGM.


Assuntos
Ecossistema , Solo/química , Regiões Antárticas , Fenômenos Geológicos , Camada de Gelo , Nitratos/análise
8.
Science ; 293(5530): 657-60, 2001 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-11474103

RESUMO

Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts of critical ecosystem services requires a process that engages scientists and decision-makers. Interdisciplinary linkages are necessary because of the climate and societal controls on ecosystems, the feedbacks involving social change, and the decision-making relevance of forecasts.


Assuntos
Ecossistema , Previsões , Agricultura , Animais , Tomada de Decisões , Surtos de Doenças , Ecologia , Epidemiologia , Humanos , Formulação de Políticas , Crescimento Demográfico , Processos Estocásticos
9.
Science ; 287(5459): 1770-4, 2000 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-10710299

RESUMO

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.


Assuntos
Ecossistema , Agricultura , Animais , Atmosfera , Dióxido de Carbono , Clima , Água Doce , Modelos Biológicos , Nitrogênio
10.
J Nematol ; 32(2): 143-53, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19270960

RESUMO

A nematode, Scottnema lindsayae, is the dominant metazoan found in soils of the McMurdo Dry Valleys, Antarctica. The distribution of S. lindsayae is patchy within and between these dry valleys; nevertheless, it is unclear to what extent these populations are genetically isolated. We investigated genetic diversity in this nematode using nuclear and mitochondrial gene sequences that encode ribosomal RNA. In 169 nematodes surveyed, only one variable site was found in each of two different expansion segments of nuclear rRNA. While most nematodes have only one sequence type, some nematodes were found to contain a mixture of both sequences. No fixed differences in nuclear sequences were observed between populations. This pattern of nuclear variation is most consistent with a single species of nematode defined morphologically as S. lindsayae. For mitochondrial DNA sequences, we found 10 variable positions defining 12 haplotypes among 188 nematodes surveyed. While all observed haplotypes are closely related, significant differences in haplotype frequencies were observed between geographically defined populations. The nuclear and mitochondrial variation suggests populations of S. lindsayae represent a single polymorphic species with some restriction of gene flow between geographic populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...