Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(7): 3136-44, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26663076

RESUMO

The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides.


Assuntos
Antibacterianos/farmacologia , Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Cloroplastos/efeitos dos fármacos , Ciprofloxacina/farmacologia , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Substituição de Aminoácidos , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , Cloroplastos/ultraestrutura , DNA Girase/química , DNA Girase/genética , DNA Girase/isolamento & purificação , Resistência a Medicamentos , Técnicas de Inativação de Genes , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Forma das Organelas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/ultraestrutura , Mutação Puntual , Conformação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
2.
PLoS One ; 5(3): e9899, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20360860

RESUMO

BACKGROUND: DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. METHODOLOGY/PRINCIPAL FINDINGS: We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. CONCLUSIONS/SIGNIFICANCE: These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , DNA Girase/metabolismo , DNA Topoisomerases/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Meiose , Proteínas Nucleares/metabolismo , Fenótipo , Fenômenos Fisiológicos Vegetais , Pólen/metabolismo , Conformação Proteica , Técnicas do Sistema de Duplo-Híbrido
3.
Antimicrob Agents Chemother ; 51(1): 181-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17074789

RESUMO

Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most coumarins and quinolones. Albicidin blocks the religation of the cleaved DNA intermediate during the gyrase catalytic sequence and also inhibits the relaxation of supercoiled DNA by gyrase and topoisomerase IV. Unlike the coumarins, albicidin does not inhibit the ATPase activity of gyrase. In contrast to the quinolones, the albicidin concentration required to stabilize the gyrase cleavage complex increases 100-fold in the absence of ATP. The slow peptide poisons microcin B17 and CcdB also access ATP-dependent conformations of gyrase to block religation, but in contrast to albicidin, they do not inhibit supercoiling under routine assay conditions. Some mutations in gyrA, known to confer high-level resistance to quinolones or CcdB, confer low-level resistance or hypersensitivity to albicidin in Escherichia coli. Within the albicidin biosynthesis region in X. albilineans is a gene encoding a pentapeptide repeat protein designated AlbG that binds to E. coli DNA gyrase and that confers a sixfold increase in the level of resistance to albicidin in vitro and in vivo. These results demonstrate that DNA gyrase is the molecular target of albicidin and that X. albilineans encodes a gyrase-interacting protein for self-protection. The novel features of the gyrase-albicidin interaction indicate the potential for the development of new antibacterial drugs.


Assuntos
Inibidores da Topoisomerase II , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/farmacologia , Cumarínicos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , DNA Super-Helicoidal/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos Orgânicos/farmacologia , Quinolonas/farmacologia , Xanthomonas/efeitos dos fármacos , Xanthomonas/genética , Xanthomonas/metabolismo
4.
Mol Genet Genomics ; 273(2): 115-22, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15744502

RESUMO

A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.


Assuntos
Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Mitocôndrias/metabolismo , Filogenia , Sequência de Aminoácidos , Biolística , Biologia Computacional , Escherichia coli , Componentes do Gene , Proteínas de Fluorescência Verde , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Recombinases Rec A/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
5.
Proc Natl Acad Sci U S A ; 101(20): 7821-6, 2004 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15136745

RESUMO

DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A(2)B(2) tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants.


Assuntos
Arabidopsis/enzimologia , Cloroplastos/enzimologia , DNA Girase/metabolismo , Mitocôndrias/enzimologia , Anti-Infecciosos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Ciprofloxacina/farmacologia , Citoplasma/metabolismo , DNA/metabolismo , DNA Girase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Filogenia , Plântula/efeitos dos fármacos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...